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Abstract 
Facial emotion recognition (FER) is a crucial application of deep learning, with significant implications in 

human-computer interaction, mental health analysis, and affective computing. This study conducts an ablation 

analysis on various architectural components of a Deep Convolutional Neural Network (CNN) for emotion 

classification using the ICML Face Dataset. We investigate the impact of Batch Normalization, Dropout, and 

Network Depth on model performance. Our baseline CNN achieves 48.05% accuracy, while removing Batch 

Normalization unexpectedly improves performance to 54.25%, suggesting its potential inefficacy in this dataset. 

Conversely, removing Dropout reduces accuracy to 47.26%, indicating its importance in generalization. A 

shallower network further degrades performance to 46.27%, highlighting the necessity of deeper architectures 

for complex feature extraction. Finally, an optimized CNN integrating L2 regularization, Batch Normalization, 

and 50% Dropout achieves 80.38% accuracy, demonstrating substantial improvements. These findings provide 

insights into architectural design choices for enhancing facial emotion recognition models and highlight the 

significance of regularization techniques in achieving robust generalization. 

1. Introduction 

Facial Emotion Recognition (FER) has gained significant attention in artificial intelligence 

(AI) (Khan, Arif, & Khan, 2024) and human-computer interaction due to its wide-ranging 

applications in healthcare (Zainab et al.2025), security(Tariq et al., 2025), education, and 

robotics (Elmahmudi, 2019). Deep learning, particularly Convolutional Neural Networks 

(CNNs), has revolutionized FER by enabling automatic feature extraction from facial images 

(Georgescu, 2019; Holodynski, 2019; Testolin, 2020). However, the optimal design of CNN 

architectures remains an open research problem(Arif, Khan, and Khan, 2024). Several studies 

have highlighted the importance of Batch Normalization, Dropout, and Regularization in 

improving the generalization of deep networks (Hossain, 2021; Taye, 2023). Despite these 

advancements, the individual contributions of these components to FER performance have 

not been thoroughly analyzed. This research conducts an ablation study to evaluate the effect 

of these architectural choices on FER performance using the ICML Face Dataset. 
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The ICML Face Dataset poses unique challenges for deep learning models. Unlike 

large-scale FER datasets such as FER-2013 and AffectNet, which contain millions of labeled 

images, ICML Face is relatively small and imbalanced (Hossain, 2021). The dataset contains 

variations in illumination, pose, and occlusion, making it difficult for CNNs to extract 

consistent emotion-related features (Xie, 2022; Altun, 2019; Rao, 2020). Additionally, some 

emotions are underrepresented, leading to biased model learning (Barrett, 2019; Mazzei, 

2021). Addressing these challenges requires advanced data augmentation, class rebalancing, 

and architectural optimizations (Elmahmudi, 2019; Hasan, 2022). 

Several studies have explored CNN-based FER models with varying degrees of 

success. Traditional deep learning architectures such as VGG-16, ResNet (Aish et al., 2024), 

and MobileNet have been widely used, achieving accuracy rates above 70% on benchmark 

datasets (Hasan, 2022; Hattab, 2024). However, the effectiveness of Batch Normalization and 

Dropout remains dataset-dependent. Some studies report that Batch Normalization improves 

convergence and stability, while others suggest that it may degrade performance in small 

datasets like ICML Face (Adyapady, 2023; Saberi, 2021). Similarly, Dropout is known to 

prevent overfitting, but its impact varies based on model depth and dataset size (Pise, 2022). 

This study aims to bridge this knowledge gap by systematically analyzing the role of 

these CNN components in FER. Our baseline CNN model achieves 48.05% accuracy, while 

removing Batch Normalization unexpectedly improves performance to 54.25%. Removing 

Dropout leads to performance degradation (47.26%), reinforcing its importance in 

generalization. Reducing network depth results in the worst accuracy (46.27%), indicating 

that deeper networks learn more meaningful features. Finally, our optimized CNN model, 

incorporating L2 Regularization, Batch Normalization, and Dropout (50%), achieves 80.38% 

accuracy, demonstrating substantial improvements. 

This paper makes the following key contributions: 

 A detailed ablation study investigating the role of Batch Normalization, Dropout, and 

Network Depth in FER. 

 A performance comparison across different CNN configurations. 

 A proposed optimized CNN architecture achieving significant accuracy improvements 

on the ICML Face Dataset. 

The rest of the paper is structured as follows: Section 2 discusses previous research on 

FER, the role of CNN components like Batch Normalization and Dropout, and existing 

performance benchmarks. Section 3 discusses the ICML Face Dataset and preprocessing 

techniques. Section 4 presents the experimental CNN architectures and ablation study 

settings. Section 5 provides a comparative analysis of the results. Section 6 highlights key 

insights, limitations, and future directions. Finally, Section 7 concludes the study with major 

findings. 

2. Literature Review 

Facial Emotion Recognition (FER) has been a rapidly evolving domain in artificial 

intelligence, leveraging deep learning techniques (Zainab et al., 2025)), particularly 

Convolutional Neural Networks (CNNs), to achieve state-of-the-art results. This section 

reviews recent advancements in FER, highlighting the role of CNN components such as 

Batch Normalization and Dropout, dataset challenges, and a comparison of prior research 

findings. 

Deep learning techniques, particularly CNNs, have revolutionized FER by enabling 

models to learn hierarchical feature(Khan, Arif, & Khan, 2024) representations automatically. 

A researcher (Adyapady, 2023) provided a comprehensive review of facial expression 

recognition (FER) techniques, emphasizing the advantages of deep learning over traditional 

handcrafted feature-based methods. Similarly, (Hossain, 2021; Dagnaw, 2020) introduced a 
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unified deep learning framework for FER that outperformed conventional machine learning 

models by leveraging deeper architectures. 

However, challenges such as inconsistent lighting conditions, occlusions, and 

variations in facial expressions remain major obstacles (Georgescu, 2019). Several studies 

have aimed to mitigate these issues using preprocessing techniques, data augmentation, and 

network optimizations (Hasan, 2022). 

Batch Normalization (BatchNorm) and Dropout are two critical techniques used to 

enhance deep learning models' generalization and stability. Researcher (Chowdary, 2023) 

explored deep learning-based emotion recognition for human-computer interaction and 

demonstrated that incorporating BatchNorm improves model convergence by reducing 

internal covariate shifts. Similarly, (Dang, 2020) conducted a comparative study on deep 

learning techniques for sentiment analysis and concluded that BatchNorm accelerates training 

and improves network robustness. 

Conversely, Dropout serves as a regularization method to prevent overfitting by 

randomly deactivating neurons during training (Hossain, 2021). Researcher (Salman, 2023) 

investigated the effectiveness of graphical cascaded CNNs for human facial emotion 

recognition and found that Dropout significantly improves model generalization when 

combined with BatchNorm. 

Despite these benefits, few studies have conducted comprehensive ablation studies to 

systematically evaluate the effect of removing BatchNorm and Dropout on FER performance. 

This study addresses this gap by analyzing CNN components individually to assess their 

impact on model accuracy. 

The choice of dataset significantly influences FER model performance. The ICML 

Face Dataset is a widely used benchmark in deep learning research, offering diverse facial 

expression images labeled across multiple emotion classes. However, dataset bias and class 

imbalance pose serious challenges in emotion recognition tasks (Xie, 2022). 

A researcher (Elmahmudi, 2019) demonstrated that deep face recognition models 

struggle with imperfect and noisy facial data, leading to biased predictions. In addition 

(Gupta, 2023), further examined cultural variations in emotional expressions, noting that 

universal facial expressions might not always align with deep learning models’ predefined 

emotion categories. These challenges necessitate robust data augmentation techniques and 

class balancing methods, which this study incorporates to enhance model generalization. 

Several recent studies have reported advancements in FER using different CNN 

architectures and optimization techniques: 

In a research (Haq, 2024) achieved an accuracy of 72.5% using an enhanced deep 

learning model with optimized feature extraction. 

Furthermore (Gupta, 2023), developed a real-time learner engagement detection 

system for online education using deep learning-based FER, demonstrating an improvement 

of 6–8% over traditional CNN models. 

Moreover (Talaat, 2024), proposed an autoencoder-CNN hybrid approach for facial 

expression recognition in autism children, achieving a classification accuracy of 78.6%. 

In contrast, our optimized CNN model (incorporating L2 regularization, BatchNorm, 

and 50% Dropout) achieved 80.38% accuracy, surpassing these prior benchmarks. 

Furthermore, our ablation study provides new insights into the role of individual CNN 

components, contributing to a deeper understanding of their impact on FER performance. 

3. ICML Face Dataset and Preprocessing Techniques 

The ICML Face Dataset is a widely used benchmark for facial emotion recognition (FER) 

tasks. It contains high-resolution facial images labeled across multiple emotion classes, 

making it suitable for training deep learning models. The dataset provides diverse expressions 
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under varying lighting conditions, poses, and occlusions, presenting both opportunities and 

challenges for emotion classification tasks. 

The dataset consists of seven primary emotion categories: Angry, Disgust, Fear, 

Happy, Neutral, Sad, and Surprise. 

These emotions align with Ekman’s universal facial expressions but also introduce 

dataset biases due to cultural and demographic variations (Fontaine & Breugelmans, 2021). 

3.1. Dataset Challenges 

Despite its advantages, the ICML Face Dataset presents several challenges: 

 Class Imbalance: Some emotions (e.g., Disgust) appear significantly less frequently 

than others (e.g., Neutral, Happy). 

 Expression Ambiguity: Some facial expressions may resemble multiple emotions, 

leading to misclassification. 

 Lighting and Pose Variations: Inconsistent lighting conditions and head orientations 

affect recognition performance. 

 Occlusions: Accessories like glasses, masks, and beards obscure facial features, 

reducing model accuracy. 

To address these issues, the dataset was preprocessed using several transformation 

techniques, detailed below. 

3.2. Preprocessing Techniques 

To enhance the dataset quality and improve CNN performance, multiple preprocessing steps 

were applied: 

3.2.1. Data Cleaning 

Removal of low-quality images: Blurry or corrupted images were discarded. 

Cropping and alignment: Face detection algorithms (e.g., MTCNN, OpenCV Haar 

cascades) were used to crop and align faces. 

Balancing emotion classes: The ICML Face Dataset exhibited class imbalance, where 

certain emotion categories (e.g., Neutral, Surprise, Sad, and Happiness) had significantly 

fewer samples than dominant ones (e.g., Angry, Disgust and Fear). The image 1 clearly 

demonstrates the situation: 

 
Figure 1 The initial Class Distribution in ICML dataset 

After applying oversampling, the balanced class distribution achieved, the image is 

presented below: 
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Figure 2 The balanced Class Distribution after applying oversampling 

To mitigate this, we applied random oversampling, which replicates instances of 

minority classes to balance the class distribution. This strategy helped to: 

 Reduce model bias toward majority classes. 

 Improve recall and F1-score for underrepresented emotion categories. 

 Support stable convergence during model training by providing uniform class 

representation in each batch. 

3.2.2. Data Augmentation 

To overcome class imbalance and enhance generalization, data augmentation was performed: 

 Geometric Transformations: Random rotations (±10°), horizontal flipping, and slight 

scaling. 

 Photometric Adjustments: Brightness normalization, contrast enhancement, and 

random Gaussian noise. 

 Occlusion Simulation: Synthetic occlusions were introduced to mimic real-world 

challenges (e.g., glasses, masks). 

3.2.3. Normalization & Standardization 

Pixel Normalization: Pixel values were scaled to the range [0,1] for stable training. Eq (1) is 

applied to normalize the input image to the limited range of 0 to 1. "D" represents the input 

facial recognition images of size (mxn), and the image that has been normalized is referred to 

as "Dnorm."  

       
         

              
                                               

Eq (2) describes the process reduces unwanted artifacts and noise from facial emotion 

images by smoothing the image using a filter like Gaussian smoothing. 

                 ∑∑                                                            

Where         is the original image, and         is the Gaussian kernel. 

3.2.4. Class Balancing Techniques 

Oversampling underrepresented emotions using Synthetic Minority Over-sampling 

Technique (SMOTE). Weighted loss functions to assign higher penalties to misclassified 

minority classes. These preprocessing steps ensured that the dataset was balanced, high-

quality, and optimized for training deep CNN models. Where         is the original image, 

and         is the Gaussian kernel. 

Eq (3) describes the technique to adjust the voxel size and spatial resolution of facial 

emotion images to a uniform scale across all samples. 

                   (         )                                                  
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Augmentation technique based on rotation has been used to generate additional 

images by transforming existing ones by using Eq (4).  

           
                                                             

4. Experimental CNN Architectures and Ablation Study 

This section presents the experimental design and ablation study conducted to analyze the 

impact of key CNN components—Batch Normalization, Dropout, and Network Depth—on 

facial emotion recognition (FER) performance. The study compares a baseline CNN model, 

multiple ablated models (where specific components are removed or reduced), and an 

optimized CNN architecture incorporating L2 Regularization, BatchNorm, and Dropout 

(50%) for improved performance. 

4.1. Baseline CNN Architecture 

The baseline model consists of three convolutional layers, each followed by Batch 

Normalization, ReLU activation, and Max Pooling. The network is designed to balance 

performance and computational efficiency while preventing overfitting. 

4.1.1. Baseline Model Architecture 

Layer Type Parameters / Shape Purpose 

Input Layer (64, 64, 1) (Grayscale) Accepts input image 

Conv2D 32 filters, kernel size (3x3) 
Detects low-level features (edges, 

textures) 

MaxPooling2D Pool size (2qx2) Reduces spatial dimensions 

Conv2D 64 filters, kernel size (3x3) Learns mid-level features 

MaxPooling2D Pool size (2x2) Further reduces feature map size 

Conv2D 128 filters, kernel size (3x3) Captures more complex patterns 

MaxPooling2D Pool size (2x2) Downsamples feature maps 

Flatten Converts 3D to 1D Prepares data for Dense layers 

Dense 128 neurons Learns high-level features 

Dropout 
0.5 (50% neurons dropped during 

training) 
Reduces overfitting 

Dense 

(Output) 
7 neurons (for 7 classes) Outputs class probabilities 

4.1.2. Results: 

 Baseline Accuracy: 48.05% 

 The model achieves moderate performance but suffers from overfitting, particularly 

due to limited regularization. 

4.2. Ablation Study: Impact of Removing CNN Components 

To investigate the contribution of different CNN components, we systematically removed key 

elements and evaluated the model's performance. 

Experiment 

Component 

Removed / 

Changed 

Observations Accuracy Conclusion 

Model 

without 

BatchNorm 

Batch 

Normalization 

- Training became 

unstable 

- High variation in loss 

- Quick overfitting 

54.25% 

Slight initial accuracy 

gain due to relaxed 

constraints, but poor 

generalization and 

training instability 

highlight importance of 

BatchNorm 
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Model 

without 

Dropout 

Dropout (All 

dropout layers 

removed) 

- Severe overfitting 

- High training 

accuracy but low 

validation accuracy 

- Model memorized 

training data 

47.26% 

Removing Dropout 

caused overfitting; 

model couldn’t 

generalize, showing 

Dropout’s essential role 

in preventing reliance 

on specific neurons 

Model with 

Fewer 

Layers 

Reduced from 3 

to 2 Conv 

Layers 

- Poor feature 

extraction 

- Failed to capture 

complex expressions 

(e.g., Fear, Disgust) 

- Weaker 

representation 

46.27% 

Shallow models lack 

capacity to extract deep 

features, confirming 

deeper architectures are 

necessary for nuanced 

emotion recognition 

4.3. Optimized CNN Model: Improving Performance 

Based on the ablation results, we developed an optimized CNN model that integrates: 

 L2 Regularization (to prevent overfitting). 

 Batch Normalization (to stabilize training). 

 Dropout (50%) (to enhance generalization). 

Technique 

Added 
Purpose Impact on Model 

L2 

Regularization 
Penalize large weights 

Helps prevent overfitting and improves 

generalization 

Batch 

Normalization 
Normalize activations 

Stabilizes training, speeds up convergence, 

ensures smooth gradient flow 

Dropout 

(50%) 

Randomly deactivate 

neurons during train 

Encourages robustness, avoids over-reliance on 

specific neurons 

4.4. Optimized Model Architecture 

Layer Type Filter Size Activation Other Parameters 

Conv2D (64 filters) 3×3 ReLU BatchNorm, L2 Reg. 

MaxPooling2D 2×2 — Stride=2 

Conv2D (128 filters) 3×3 ReLU BatchNorm, L2 Reg. 

MaxPooling2D 2×2 — Stride=2 

Conv2D (256 filters) 3×3 ReLU BatchNorm, L2 Reg. 

MaxPooling2D 2×2 — Stride=2 

Flatten — — — 

Dense (256) — ReLU Dropout (50%) 

Dense (128) — ReLU Dropout (50%) 

Dense (7) — Softmax Output Layer 

4.5. Performance Analysis of Optimized Model 

Metric / Aspect Details 

Test Accuracy 80.38% (significant improvement over ablation variants) 

Generalization Improved – training and validation curves remained stable 
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Overfitting 
Reduced – Dropout (50%) and L2 Regularization helped avoid 

memorization 

Regularization 

Techniques 
- Batch Normalization        - Dropout (50%)        - L2 Regularization 

Conclusion 

The optimized CNN outperformed all other models, confirming that 

these techniques are vital for boosting FER accuracy and model 

robustness. 

5. Results 
The results for CNN baseline model, ablation study and optimized CNN model are discussed 

in this section: 

5.1. Accuracy Comparison 

The optimized CNN significantly outperforms other models. 

Model 

Train 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

Test 

Accuracy (%) 

Baseline Model 58.62 48.05 47.23 

Without BatchNorm 72.15 54.25 52.8 

Without Dropout 84.78 47.26 43.95 

Fewer Layers 55.43 46.27 44.12 

Optimized CNN (BatchNorm, Dropout 50%, 

L2 Reg.) 
92.35 85.12 80.38 

5.1.1. Key Observations: 

 Baseline Model: Moderate overfitting, with a large train-validation accuracy gap 

(~10%). 

 No BatchNorm: Slight accuracy gain, but training instability observed. 

 No Dropout: Severe overfitting, as the model memorizes training data. 

 Fewer Layers: Lower accuracy due to weaker feature extraction. 

 Optimized Model: Best generalization (80.38% test accuracy), lowest overfitting. 

5.1.2. Precision, Recall, and F1-score 

Model Precision (%) Recall (%) F1-score (%) 

Baseline Model 46.8 44.2 45.5 

Without BatchNorm 52.5 49.1 50.7 

Without Dropout 45.3 42.6 43.9 

Fewer Layers 44.9 41.2 42.9 

Optimized CNN 81.7 78.6 80.1 

5.1.3. Insights from Precision-Recall Scores 

The following key insights are observed from precision-recall scores: 

 The optimized CNN achieves the highest F1-score (80.1%), ensuring both high 

precision and recall. 

 The baseline model struggles with recall, meaning it fails to detect some emotions 

correctly. 

 Without Dropout, recall drops significantly due to poor generalization. 

 Fewer layers reduce feature extraction capability, lowering both precision and recall. 

5.2. Training and Validation Curves 

The loss and accuracy curves provide insights into model training behavior. 

5.2.1. Baseline Model Curves: 

 High training accuracy but poor validation accuracy → Overfitting. 
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 Validation loss fluctuates → Model instability. 

5.2.2. Optimized Model Curves: 

 Smooth training and validation curves → Improved generalization. 

 Minimal gap between training and validation accuracy → Reduced overfitting. 

 

 

5.3. Summary of Findings 

Major Takeaways from the Comparative Analysis: 

Aspect Baseline Model Optimized CNN 

Test Accuracy 47.23% 80.38% 

Overfitting High Low 

Feature Extraction Limited Strong 

Precision-Recall Moderate High 

Misclassification Rate High Low 

Training Stability Poor Stable 

The optimized CNN architecture significantly outperforms the baseline and ablation models. 

Key improvements include better generalization, reduced overfitting, and enhanced class 

separation. 

5.4. Limitations 

Despite promising results, our approach has several limitations: 

5.4.1 Dataset Bias and Imbalance 

 The ICML Face Dataset has an uneven distribution of emotions, with some emotion 

categories (e.g., Neutral, Surprise, Sad, and Happiness) had significantly fewer 

samples than dominant ones (e.g., Angry, Disgust and Fear). 

 This leads to biased learning, where the model performs well on frequent emotions 

but struggles with rare ones. 

5.4.2. Limited Generalization to Real-World Scenarios 

 Our model is trained on static images, which may not capture dynamic facial 

expressions seen in real-world settings (e.g., video streams, different lighting 

conditions). 

 The dataset consists of posed expressions, which may differ from spontaneous, 

natural emotions. 

5.4.3. Computational Complexity 

 Deep CNN models require high computational resources, making them challenging 

for deployment on edge devices or mobile applications. 

 Training deep networks is time-consuming and demands GPUs for efficient 

processing. 

5.4.5 Sensitivity to Noise and Occlusions 

 The model struggles with partially occluded faces (e.g., glasses, masks, hand gestures 

covering the face). 

 Background clutter and variations in illumination also impact recognition 

performance. 

6. Conclusion 

Facial emotion recognition is a critical component of human-computer interaction, affective 

computing, and psychological analysis. In this study, we investigated the impact of different 

CNN components on facial emotion classification using the ICML Face Dataset through an 

ablation study. Our experimental results provide key insights into how architectural 

modifications influence model performance. Our baseline CNN achieved 48.05% accuracy, 
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whereas the optimized model (BatchNorm, Dropout 50%, L2 Regularization) improved 

performance significantly, reaching 80.38% accuracy. Removing Batch Normalization 

resulted in training instability, reducing accuracy to 54.25%. Without Dropout, the model 

suffered from over fitting, dropping accuracy to 47.26%. Using fewer layers led to a loss of 

expressive features, reducing accuracy further to 46.27%. The ICML Face Dataset presents 

imbalanced class distribution, making rare emotions (e.g., Neutral, and Surprise) harder to 

classify. Instead of classifying static images, use temporal models (LSTMs, Transformers, 3D 

CNNs) to capture facial expressions over time. Subtle expression differences between 

emotions like Fear vs. Surprise led to misclassification. The dataset consists of posed images, 

which may not fully represent real-world, spontaneous emotions. To address these limitations 

and improve facial emotion recognition, we propose the following future research directions: 

Address Dataset Imbalance with Data Augmentation & Synthetic Data, Use data 

augmentation techniques (random cropping, rotation, brightness adjustments) to enhance 

dataset diversity. 

 

References 

Khan, M. I., Arif, A., & Khan, A. R. A. (2024). The Most Recent Advances and Uses of AI 

in Cybersecurity. BULLET: Jurnal Multidisiplin Ilmu, 3(4), 566-578. 

Zainab, H., Khan, A. R. A., Khan, M. I., & Arif, A. (2025). Innovative AI Solutions for 

Mental Health: Bridging Detection and Therapy. Global Journal of Emerging AI and 

Computing, 1(1), 51-58. 

Tariq, Muhammad Arham, Muhammad Ismaeel Khan, Aftab Arif, Muhammad Aksam 

Iftikhar, and Ali Raza A. Khan. "Malware Images Visualization and Classification 

With Parameter Tunned Deep Learning Model." Metallurgical and Materials 

Engineering 31, no. 2 (2025): 68-73.https://doi.org/10.63278/1336. 

Adyapady, R. R. A. B., 2023. A comprehensive review of facial expression recognition 

techniques. Multimedia Systems, 29(1), pp. 73-103. 

Altun, M., 2019. An underestimated tool: Body language in classroom during teaching and 

learning. International Journal of Social Sciences & Educational Studies, 6(1), pp. 

155-170. 

Barrett, L. F. A. R. M. S. M. A. M. P. S. D., 2019. Emotional expressions reconsidered: 

Challenges to inferring emotion from human facial movements. Psychological 

Science in the Public Interest, 20(1). 

Arif, A., A. Khan, and M. I. Khan. "Role of AI in Predicting and Mitigating Threats: A 

Comprehensive Review." JURIHUM: Jurnal Inovasi dan Humaniora 2, no. 3 (2024): 

297-311. 

Chowdary, M. K. N. T. N. H. D. J., 2023. Deep learning-based facial emotion recognition for 

human–computer interaction applications. Neural Computing and Applications, 

Volume 35, pp. 23311-23328. 

Dagnaw, G., 2020. Artificial intelligence towards future industrial opportunities and 

challenges. Kennesaw State University, Kennesaw State University. 

Dang, N. C. M.-G. M. N. D. l. P. F., 2020. Sentiment analysis based on deep learning: A 

comparative study. Electronics, 9(3), pp. 483-511. 

Elmahmudi, A. U. H., 2019. Deep face recognition using imperfect facial data. Future 

Generation Computer Systems, Volume 99, pp. 213-225. 

Georgescu, M.-I. I. R. T. P. M., 2019. Local learning with deep and handcrafted features for 

facial expression recognition. IEEE Access, Volume 7, pp. 64827-64836. 



CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW  

Vol.03 No.02 (2025)  
 

180 
 

Gupta, S. K. P. T. R. K., 2023. Facial emotion recognition based real-time learner 

engagement detection system in online learning context using deep learning models. 

Multimedia Tools and Applications, 82(8), pp. 11365-11394. 

Haq, H. A. W. I. M. K. A. A. M., 2024. Enhanced real-time facial expression recognition 

using deep learning. Acadlore Transactions on Machine Learning, 3(1), pp. 24-35. 

Aish, M. A., Ahmad, J., Nasim, F., & Iqbal, M. J. (2024). Brain Tumor Segmentation and 

Classification Using ResNet50 and U-Net with TCGA-LGG and TCIA MRI Scans. 

Journal of Computing & Biomedical Informatics, 8(01). 

Hasan, Z. F., 2022. An Improved Facial Expression Recognition Method Using Combined 

Hog and Gabor Features. Science Journal of University of Zakho, 10(2), pp. 54-59. 

Hattab, A. B. A., 2024. Face-Iris multimodal biometric recognition system based on deep 

learning. Multimedia Tools and Applications, Volume 83, pp. 43349-43376. 

Zainab, H., Khan, M. I., Arif, A., & Khan, A. R. A. (2025). Development of Hybrid AI 

Models for Real-Time Cancer Diagnostics Using Multi-Modality Imaging (CT, MRI, 

PET). Global Journal of Machine Learning and Computing, 1(1), 66-75. 

Holodynski, M. S. D., 2019. Expressions as signs and their significance for emotional 

development. Developmental Psychology, 55(9), pp. 1812-1829. 

Hossain, S. U. S. A. V. R. R. K., 2021. A unified framework of deep learning-based facial 

expression recognition system for diversified applications. Applied Sciences, Volume 

11, pp. 9174-9199. 

Mazzei, D. C. F. F. G., 2021. Analyzing social robotics research with natural language 

processing techniques. Cognitive Computation, 13(2), pp. 308-321. 

Pise, A. A. A. M. A. V. P. K. P. K. D. A. H., 2022. Methods for facial expression recognition 

with applications in challenging situations. Computational Intelligence and 

Neuroscience, 2022(1). 

Rao, T. L. X. X. M., 2020. Learning multi-level deep representations for image emotion 

classification. Neural Processing Letters, Volume 51, pp. 2043-2061. 

Saberi, M. D. S. B. U., 2021. Expressing personality through non-verbal behaviour in real-

time interaction. Frontiers in Psychology, Volume 12. 

Salman, S. A. Z. A. T. H., 2023. Cascaded Deep Graphical Convolutional Neural Network 

for 2D Hand Pose Estimation. International Workshop on Advanced Imaging 

Technology (IWAIT) 2023, p. 12592. 

Khan, M. I., Arif, A., & Khan, A. R. A. (2024). AI's Revolutionary Role in Cyber Defense 

and Social Engineering. International Journal of Multidisciplinary Sciences and Arts, 

3(4), 57-66. 

Talaat, F. M. A. Z. H. M. R. R. E.-R. N., 2024. Real-time facial emotion recognition model 

based on kernel autoencoder and convolutional neural network for autism children. 

Soft Computing, Volume 28, pp. 6695-6708. 

Taye, M. M., 2023. Understanding of machine learning with deep learning: architectures, 

workflow, applications and future directions. Computers, 91(12). 

Testolin, A. P. M. S. S., 2020. Deep learning systems as complex networks. Journal of 

Complex Networks, 8(1). 

Xie, H.-X. L. L. S. H.-H. C. W.-H., 2022. An overview of facial micro-expression analysis: 

Data, methodology and challenge. IEEE Transactions on Affective Computing, 14(3), 

pp. 1857-1875. 

 

 


