

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.02 No.04 (2024)

2138

SOFTWARE AUTOMATION TESTING: COMPARING NO-CODE, LOW-CODE,

AND TRADITIONAL APPROACHES

(2025)

Shawaiz Arif

Email: shawaizarif1@gmail.com

Department of Information Technology, Superior University, Lahore, Pakistan

Muhammad Faisal

Email: faisalshafiq02@outlook.com

Department of Computer Science, Superior University, Lahore, Pakistan

Muhammad Saad Khan Lodhi

Email: skpro571@gmail.com

Department of Computer Science, Superior University, Lahore, Pakistan

Supervisor Prof. Saleem Zubair Ahmad

MS. Software Engineering

Saleem.zubair@superior.edu.pk

Department of Software Engineering, Superior University, Lahore, Pakistan

Co-Supervisor Sabah Arif

Sabah.Arif@Superior.edu.pk

Department of Software Engineering, Superior University, Lahore, Pakistan

Abstract:
Automated software testing tools play a vital part in guaranteeing the trustability, effectiveness, and quality of

software operations. As the lifecycles of software development grow more intricate, the demand for effective

robotization testing has risen vastly. This paper offers a relative evaluation of low- code, no- code, and

traditional automation testing tools, assessing them grounded on essential criteria similar as customization,

client support, user-friendliness, and integration capabilities..

Furthermore, it explores the advantages and limitations of each tool category, providing a comprehensive guide

for new testers to select the most appropriate automation technique based on their skill level and project

requirements. The findings indicate that no-code tools offer accessibility for non-technical testers, low-code

tools balance ease of use with moderate customization, and traditional tools provide maximum flexibility and

scalability for experienced testers handling complex projects. By understanding the strengths and weaknesses of

each category, testers and organizations can make informed decisions to optimize their software testing

strategies [2].

Keywords:

No-Code Tools, Low-Code Tools, Traditional Automation Tools, Software Quality

Assurance (SQA), Test Automation, Agile Testing, Scalability, Customization, Ease of Use,

Implementation Speed, Cost-Effectiveness, Complex Testing Scenarios, AI Integration,

Machine Learning, Automation Tools Comparison, Software Testing, Continuous Integration,

Testing Efficiency, Automation Strategy, Software Development Lifecycle, Real-World Case

Studies.

I. INTRODUCTION

Software testing has develop an important phase in the software development lifecycle

(SDLC), particularly with the rise of Agile methodologies and DevOps practices. Automation

testing tools have reduce the time and effort involved in testing, therefore accelerating the

software release cycle. These tools are distributed into three main types low- code, no- code,

and traditional tools, each catering to different user conditions. For new testers, the challenge

.

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.02 No.04 (2024)

2139

lies in choosing the best tool grounded on their programming proficiency and project

demands.

As software testing becomes more integral to continuous integration (CI) and continuous

delivery (CD) pipelines, understanding the nuances of these automation tools is crucial. This

paper aims to provide an in-depth comparison of the three categories of automation tools and

offer guidance for new testers on how to select the most appropriate tool for their skills and

the complexity of their testing requirements [5].

II. LITERATURE REVIEW

Automation testing has importantly evolved over the past decade, driven by the need for rapid

software development cycles, Agile methodologies, and DevOps practices. Experimenters

have significantly analyzed automation testing tools, comparing their effectiveness,

scalability, and ease of use to identify their strengths and limitations.

2.1 No-Code Automation Testing Tools

No-code automation tools have gained traction due to their user-friendly interfaces and ability

to democratize test automation. Smith et al. (2021) highlight that these tools enable non-

technical testers to automate test cases without programming expertise, making them highly

suitable for organizations seeking rapid automation with minimal learning curves. The study

further emphasizes that Selenium IDE, a widely used no-code tool, simplifies test creation

through record-and-playback features, but its limitations include a lack of flexibility and

reduced support for complex testing scenarios.

Cypress, another emerging tool in this space, introduces a hybrid approach, incorporating

low-code elements while remaining accessible to users with limited technical knowledge.

However, Johnson and Lee (2020) argue that no-code tools struggle with scalability and

require integration with other frameworks for enterprise-level applications.

2.2 Low-Code Automation Testing Tools

Low-code automation tools serve as a bridge between no-code simplicity and traditional

automation flexibility. Kumar (2022) compared Katalon Studio, Ranorex, and Ghost

Inspector with traditional testing frameworks and found that low-code tools significantly

reduce the learning curve while offering more control over test scripts. These tools often

support both UI-based test creation and script-based modifications, providing a balanced

approach for testers with moderate coding experience.

One notable advantage of low-code tools is their ability to integrate with Continuous

Integration/Continuous Deployment (CI/CD) pipelines while maintaining ease of use.

Research by Subramaniam (2020) suggests that organizations adopting low-code automation

frameworks experience faster test case development cycles and improved test maintenance

efficiency. However, a key drawback remains their limited customization when dealing with

highly complex, enterprise-level applications requiring deep scripting capabilities.

2.3 Traditional Automation Testing Tools

Traditional automation tools, such as Selenium WebDriver, Appium, and JMeter, remain the

most powerful solutions for advanced test automation. Johnson and Lee (2020) highlight that

these tools offer unparalleled flexibility, customization, and scalability, making them the

preferred choice for complex testing environments. They allow testers to write detailed,

reusable scripts using programming languages such as Java, Python, and C#, enabling in-

depth validation of software functionalities.

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.02 No.04 (2024)

2140

Despite their advantages, traditional tools have a steep learning curve and require extensive

coding knowledge. A study by Brown (2019) indicates that while organizations using

Selenium WebDriver benefit from its open-source nature and vast community support, the

framework’s initial setup and maintenance efforts can be resource-intensive. Moreover,

Kumar (2022) notes that traditional tools require robust test management practices, as poorly

structured scripts can lead to high maintenance costs and increased debugging efforts.

2.4 Comparative Studies and Industry Trends

Several comparative studies have examined the effectiveness of different automation testing

approaches. A study conducted by Smith and Brown (2021) found that while no-code tools

accelerate test case creation, their limited flexibility makes them suitable only for simple

scenarios. In contrast, low-code tools provide a balance between usability and customization,

whereas traditional tools excel in scalability and advanced scripting capabilities.

Additionally, with the growing relinquishment of AI- driven testing, recent exploration

proposes that hybrid automation models incorporating both low- code and traditional

frameworks are getting progressively popular. Organizations are using AI- powered

automation tools that enhance self- healing capabilities, predictive analytics, and intelligent

test generation, further optimizing the effectiveness of automation testing strategies(

Subramaniam, 2020).

III. RESEARCH METHODOLOGY

This study employs a organized comparative analysis approach to assess the effectiveness of

low-code, no-code, and traditional automation testing tools. The methodology contains of the

following steps:

1. Selection of Tools: A diverse set of tools from each category was carefully chosen

based on their industry relevance, adoption rate, and functional capabilities. Selection

criteria included factors such as market demand, user reviews, and compatibility with

modern software development methodologies.

2. Evaluation Criteria: The tools were measured based on numerous key factors,

including customization, ease of use, scalability, customer support, integration

capabilities, reporting features, and cost-effectiveness. These factors were selected to

provide a comprehensive understanding of each tool's strengths and weaknesses.

3. Data Collection: Data was gathered from multiple reliable sources, including

official tool documentation, industry whitepapers, peer-reviewed research papers, case

studies, user forums, and direct feedback from software testing professionals. This

multi-source approach ensured a well-rounded and unbiased assessment.

4. Analysis and Comparison: The collected data was systematically analyzed and

presented in tabular format to highlight feature differences and comparative

advantages among low-code, no-code, and traditional automation tools. The analysis

focused on practical usability, efficiency, and real-world application in testing

environments.

5. Validation and Expert Review: The findings were validated through real-world

case studies, direct testing of selected tools, and consultation with experienced

software testers and industry experts. Their insights provided additional credibility

and practical relevance to the study's conclusions.

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.02 No.04 (2024)

2141

IV. COMPARATIVE ANALYSIS

A. Low-Code Automation Testing Tools

Feature

Ghost

Inspec

tor

Ranor

ex

Kata

lon

Studi

o

Customiz

ation

Moder

ate
High High

Customer

Support
Yes Yes Yes

End-to-

End

Testing

Yes Yes Yes

Ease of

Use
High

Moder

ate
High

Free or

Open

Source

No No
Partia

lly

Trial

Time

14

Days

30

Days

Free

Tier

Avail

able

Platform

Support
Web

Deskto

p,

Web,

Mobil

e

Web,

Mobi

le,

API

Language

Support

JavaSc

ript

C#,

VB.N

ET

Java,

Groo

vy

Data-

Driven

Testing

Yes Yes Yes

Reports Yes Yes Yes

Test Case

Developm

ent

Drag

&

Drop

Code

+ UI

UI &

Scrip

ting

Slack/Em

ail

Integratio

n

Yes Yes Yes

Test

Pass/Fail

Alerts

Yes Yes Yes

Key Insight: Low-code tools like Katalon Studio and Ranorex provide a balance of ease of

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.02 No.04 (2024)

2142

use and customization. While they are suitable for teams with limited coding knowledge, they

allow for more flexibility than no-code tools. Ghost Inspector stands out as a tool with an

easy-to-use interface but more limited customization capabilities (Smith & Brown, 2021).

B. No-Code Automation Testing Tools

Feature
Selenium

IDE
Cypress TestComplete

Customization Low Moderate High

Customer

Support
Yes Yes Yes

End-to-End

Testing
Yes Yes Yes

Ease of Use
Very

High
High High

Free or Open

Source
Yes No No

Trial Time Free Free Tier 30 Days

Platform

Support
Web Web

Web,

Desktop,

Mobile

Language

Support
JavaScript JavaScript

JavaScript,

Python

Data-Driven

Testing
No Yes Yes

Reports No Yes Yes

Test Case

Development

Record &

Playback

UI +

Code

UI &

Scripting

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.02 No.04 (2024)

2143

Slack/Email

Integration
No Yes Yes

Test Pass/Fail

Alerts
No Yes Yes

Key Insight:

 Selenium IDE and Cypress are excellent tools for testers without programming skills. While

Selenium IDE is ideal for simple scenarios with record-and-playback, Cypress introduces

more flexibility with coding, but it requires some JavaScript knowledge. TestComplete

provides a more professional no-code solution with rich features like data-driven testing and

integrated reporting (Johnson & Lee, 2020).

C. Traditional Automation Testing Tools

Feature
Selenium

WebDriver
Appium Postman JMeter SoapUI Cucumber

Customization Very High High High High High High

Customer

Support
Community Community Yes Yes Yes Yes

End-to-End

Testing
Yes Yes Yes Yes Yes Yes

Ease of Use Low Moderate High High Moderate High

Free or Open

Source
Yes Yes Yes Yes Yes Yes

Trial Time Free Free Free Free Free Free

Platform

Support
Web Mobile API

Load

Testing
API

BDD

Testing

Language

Support

Java,

Python, C#

Java,

Python, C#
JavaScript Java

Java,

Groovy
Java

Data-Driven

Testing
Yes Yes Yes Yes Yes No

Reports No No Yes Yes Yes Yes

Test Case

Development

Code-

Based

Code-

Based

UI +

Code

UI &

Scripting

UI &

Scripting
BDD

Slack/Email

Integration
No No Yes Yes Yes Yes

Test Pass/Fail

Alerts
No No Yes Yes Yes Yes

Key Insight: Traditional tools like Selenium WebDriver and Appium give high

customization and flexibility, making them ideal for complex, large- scale systems that

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.02 No.04 (2024)

2144

require extensive configuration and detailed scripting. These tools demand further specialized

expertise but offer unparalleled control and scalability. Cucumber and Postman are

particularly effective for BDD (Behavior- Driven Development) testing and API testing,

respectively (Kumar, 2022).

V. ADVANTAGES AND DISADVANTAGES

A. No-Code Automation Testing Tools

No-code automation tools are designed for testers with little to no programming experience.

These tools provide a user-friendly interface that allows users to create and execute

automated tests without writing code.

1. Advantages

 Ease of Use – No-code tools offer a visual, drag and-drop interface, enabling

quick test creation without requiring programming skills.

 Rapid Test Development – Test automation is significantly accelerated, making

it an ideal choice for Agile and DevOps environments.

 Accessibility for Non-Technical Testers – Business analysts, product managers,

and manual testers can contribute to automation efforts.

 Low Maintenance Effort – The record-and-playback approach reduces the need

for script maintenance.

 Seamless Collaboration – Non-technical stakeholders can actively participate in

test automation.

2. Disadvantages

 Limited Customization – No-code tools may not support complex test logic or

integrations with advanced testing frameworks.

 Scalability Constraints – These tools may struggle to support large-scale

automation projects.

 Vendor Lock-In – Functionality is restricted to the features provided by the

vendor, limiting extensibility.

 Integration Challenges – Some no-code tools have limited support for CI/CD

pipelines and version control systems.

 Potential Cost Implications – Enterprise-grade no-code automation tools often

require expensive licensing.

B. Low-Code Automation Testing Tools

Low-code automation tools provide a hybrid approach, combining graphical test case creation

with scripting capabilities. These tools cater to testers with basic programming knowledge

who require more flexibility than no-code solutions.

1. Advantages

 Balance of Usability and Customization – Low-code tools offer both visual

interfaces and scripting support, making them adaptable for various testing needs.

 Faster Test Development – Pre-built automation frameworks and reusable

components reduce the time required for test creation.

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.02 No.04 (2024)

2145

 Improved Integration with DevOps Pipelines – Most low-code tools support

CI/CD and version control systems.

 Reduced Learning Curve – Compared to traditional tools, low-code solutions

require minimal coding knowledge.

 Enhanced Maintainability – Automated tests can be updated efficiently with

minimal script modifications.

2. Disadvantages

 Limited Control Over Advanced Test Scenarios – While more flexible than no-

code tools, low-code solutions may not provide full customization.

 Higher Costs Compared to Open-Source Tools – Many low-code platforms

require paid subscriptions, increasing project expenses.

 Tool-Specific Constraints – Feature availability depends on the vendor,

potentially leading to compatibility issues.

 Dependency on UI-Based Elements – Test cases may be affected by UI changes,

requiring frequent updates.

C. Traditional Automation Testing Tools

Traditional automation testing tools, such as Selenium WebDriver, Appium, and JMeter,

provide full scripting capabilities, enabling advanced test automation. These tools are best

suited for experienced testers with programming proficiency.

1. Advantages

 High Customization and Flexibility – Traditional tools allow testers to create

complex automation scripts tailored to specific requirements.

 Scalability for Large-Scale Applications – Suitable for enterprise-level projects

requiring extensive automation.

 Multi-Language Support – Supports programming languages such as Java,

Python, and C#, providing flexibility in test development.

 Open-Source Availability – Many traditional tools are free, reducing licensing

costs.

 Robust Community Support – Large user communities contribute to continuous

improvements, plugins, and troubleshooting resources.

 Seamless Integration with DevOps Pipelines – Well-suited for CI/CD

environments and Agile workflows.

2. Disadvantages

 Steep Learning Curve – Requires programming knowledge, making it less

accessible for non-technical testers.

 Time-Intensive Test Development – Writing and maintaining automation scripts

demands significant effort.

 Complex Initial Setup – Configuration and infrastructure setup require additional

expertise and resources.

 High Maintenance Costs – Test scripts must be continuously updated to adapt to

application changes.

 Resource-Intensive – Traditional automation necessitates dedicated automation

engineers, increasing operational costs.

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.02 No.04 (2024)

2146

VI. RECOMMENDATIONS FOR NEW TESTERS

For new testers looking to choose the best automation tool:

1. No Coding Knowledge:

Recommended Tool: No-code tools such as Selenium IDE or TestComplete.

Why: These tools offer the simplest user interface and allow non-technical testers to

automate basic tasks quickly (Johnson & Lee, 2020).

2. Basic Programming Skills:

◦ Recommended Tool: Low-code tools like Katalon Studio.

◦ Why: These tools offer a balance of simplicity and customization, allowing

testers with some technical expertise to create effective automated tests.

3. Experienced Testers:

◦ Recommended Tool: Traditional tools such as Selenium WebDriver or

Appium.

◦ Why: These tools are best for testers with advanced programming

knowledge who require complete control over the testing process (Kumar,

2022).

VII. CONCLUSION

The selection of an automation testing tool is a critical decision that significantly impacts the

efficiency, effectiveness, and scalability of software testing efforts. This paper has explored

the three primary categories of automation testing tools—low-code, no-code, and traditional

tools—each of which offers unique benefits and challenges, depending on the tester's

technical expertise and the nature of the project.

For non-technical testers or those with limited programming experience, no-code tools like

Selenium IDE and TestComplete offer the quickest and easiest path to automate testing tasks,

enabling them to perform essential test automation without needing to write a single line of

code. These tools empower teams to implement rapid test automation, making them ideal for

smaller projects or organizations looking to onboard testers with minimal technical expertise

(Smith & Brown, 2021). However, their limited customization options may restrict their

applicability for more complex or large-scale testing needs.

For testers who possess a basic understanding of programming, low-code tools such as

Katalon Studio provide a middle ground. These tools combine the simplicity of no-code tools

with the flexibility of traditional tools, offering a more customizable approach to automation

testing without overwhelming testers with complex coding requirements. Low-code tools

enable faster test development and are well-suited for smaller teams looking to scale their

testing efforts while maintaining control over test execution and reporting (Kumar, 2022).

However, their limitations in terms of deep customization and flexibility might make them

unsuitable for highly complex or enterprise-level automation.

On the other hand, traditional automation tools like Selenium WebDriver and Appium are

ideal for seasoned testers with advanced programming skills who require a high level of

control over test development. These tools offer unmatched flexibility, scalability, and

integration capabilities, making them the preferred choice for large enterprises or projects that

involve complex testing scenarios. The trade-off, however, is the steep learning curve and

time investment required to master these tools. Traditional tools provide the best solution for

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.02 No.04 (2024)

2147

long-term, large-scale test automation projects, where customization, scalability, and

integration with other development tools are paramount (Johnson & Lee, 2020).

Ultimately, the decision on which tool to choose depends on several factors, including the

tester’s skill level, the complexity of the test cases, and the project’s size and long-term goals.

For new testers, the key is to align their choice with their current technical proficiency while

considering the project’s scalability and maintenance needs. As automation tools continue to

evolve, it is important for testers to stay updated on advancements in this space, ensuring that

they can choose the best tool for their specific context and future-proof their testing strategies.

In conclusion, while no-code and low-code tools democratize automation testing by making it

accessible to a broader audience, traditional tools remain indispensable for projects that

require deep customization, high scalability, and extensive control over the testing process. A

thorough understanding of the strengths and limitations of each category will empower testers

to make informed decisions that best suit their project needs and organizational goals.

VIII. REFERENCES

[1] Smith, J., & Brown, L. (2021). Adoption of No-Code Automation Tools in Agile

Environments. Journal of Software Testing, 15(2), 45-60.

[2] Johnson, K., & Lee, M. (2020). Comparative Study of Traditional and Modern

Automation Testing Frameworks. Software Engineering Review, 28(1), 75-92.

[3] Kumar, R. (2022). Low-Code vs. Traditional Testing: Efficiency and Limitations.

International Journal of Software Engineering, 30(3), 123-140.

[4] Subramaniam, P. (2020). The Evolution of Automation Testing Tools. Software Testing

Practices, 12(1), 32-45.

[5] Brown, A. (2019). Selecting the Right Testing Tool: A Comparative Approach. Software

Automation Journal, 24(3), 99-114.

[6] Meszaros, G. (2007). xUnit Test Patterns: Refactoring Test Code. Addison-Wesley.

[7] Bass, L., Weber, I., & Zhu, L. (2015). DevOps: A Software Architect’s Perspective.

Addison-Wesley.

[8] Humble, J., & Farley, D. (2010). Continuous Delivery: Reliable Software Releases

through Build, Test, and Deployment Automation. Addison-Wesley.

[9] Koomen, T., & Pol, M. (1999). Test Process Improvement: A Practical Step-by-Step

Guide to Structured Testing. Addison-Wesley.

[10] Fewster, M., & Graham, D. (1999). Software Test Automation: Effective Use of Test

Execution Tools. Addison-Wesley.

[11] Lee, K., Park, S., & Kim, J. (2020). "No-Code and Low-Code Platforms: A Paradigm

Shift in Automation

[12] Lopez, A., Garcia, T., & Wang, Z. (2020). "Challenges and Opportunities in

Automating Software Testing." International Journal of Software Quality.

[13] Martin, H., Taylor, J., & Schwartz, B. (2021). "The Impact of Automation on Software

Testing Efficiency." Software Quality Journal.

[14] Smith, J., & Johnson, R. (2019). "The Role of Traditional Automation Tools in Software

Testing." International Conference on Software Testing.

[15] Williams, A., & Zhang, H. (2022). "Cost-Effectiveness of Low-Code and No-Code Tools

for QA Teams." Journal of Information Technology and Management.

