

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.03 No.01 (2025)

602

UNRAVELING DATABASE CHOICES IN ANDROID STUDIO: A COMPARATIVE

ANALYSIS OF SQLITE AND ROOM PERSISTENCE LIBRARY

Muddasir Abbas

su92-mspmw-s24-007@superior.edu.pk

Meer Usman Amjad

su92-mspmw-f24-002@superior.edu.pk

Saleem Zubair

Saleem.zubair@superior.edu.pk

Asim Amin

asimamin30@gmail.com

Sabah Arif

Sabah.arif@superior.edu.pk

Muhammad Abdullah Irfan Khan

khanabdullah2235@gmail.com

Abstract
A mobile app heavily relies on user data. If an app doesn't address user inquiries effectively it may struggle to

stay competitive in the market. The blame, for this setback lies with the developer. The demand for Android apps

is on the rise. This study delves into. Contrasts two database systems. Room Persistence Library. To complement

existing research in this area we carried out experiments by setting up both databases and executing queries. We

aimed to determine which database is more user-friendly and efficient. This study proves beneficial for developers

seeking to make decisions regarding the database for their projects. It offers insights, into how each database

operates and responds aiding developers in grasping their functionality and performance levels.

Keywords: SQLite, Room Persistence Library, MVVM, Android Studio, Database, Java,

CURD Operation,

1. Introduction

The (Holla and Katti, 2012) world has seen a significant shift from websites to mobile

applications. Android Studio plays a vital role in developing mobile applications. It gets

updated frequently, introducing new versions regularly. Android Studio offers a variety of

databases for applications. For developers it can be tricky to determine the database, in terms

of efficiency, reliability, scalability, backup, recovery and security (Pujari et al., 2020). When

it comes to Android Studio and local databases choosing the " practices" for database selection

can be subjective and influenced by factors like the applications needs, complexity and

performance requirements. While developers may have preferences based on their experiences

a research study that compares the behavior and impact of databases such as SQLite and the

Room persistence library can offer objective insights and empirical evidence. Through an

assessment of performance, efficiency, scalability, data integrity, security aspects among others

for both databases. This study aims to provide results that can assist developers in making

decisions when selecting the most suitable database for their Android applications based on

data-driven evidence rather than personal opinions. This research could greatly benefit the

Android development community by offering a guide backed by evidence to help optimize

application performance and enhance user experience through selecting a local database

solution, for their projects. To tackle this issue we evaluated the performance of two databases

SQLite and the Room persistence library. This study aims to provide reassurance to readers

regarding the efficiency of these databases enabling them to make informed choices for their

apps.

mailto:mudassirabbas0932@gmail.com
mailto:Saleem.zubair@superior.edu.pk
mailto:Saleem.zubair@superior.edu.pk
mailto:Sabah.arif@superior.edu.pk
mailto:khanabdullah2235@gmail.com

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.03 No.01 (2025)

603

2. Literature Review

(Dobslaw and Dobslaw n.d) conducted a study comparing Room and Green DAO databases in

Android applications. They focused on assessing the performance of CRUD operations in terms

of time efficiency, resource consumption (RAM and CPU usage), and the size of the apps. The

results indicated that Green DAO outperformed Room and SQLite, for CRUD operations.

Nonetheless, Room demonstrated performance for databases containing up to 5000 entries. Is

suggested for managing relational data with cascading requirements. On the other hand, Green

DAO is recommended for handling non-relational data. The measurements were carried out

using an Android Virtual Device (AVD) to ensure outcomes. The primary objective of the

research was to investigate performance variances between Room and Green DAO with SQLite

serving as a benchmark, for app size comparisons. In their paper, (Obradovic et al., 2019)

analyze the performance of the SQLite database concerning fundamental data operations,

namely CRUD. The study explores whether SQLite can meet the requirements of modern

applications and primarily concentrates on the following three aspects: database operations on

unencrypted data, operations on encrypted data, and concurrent access to the database. The

paper's findings show how well the SQLite database performs when dealing with big sets of

data. (Lyu et al., 2017) this paper presents a comprehensive study of mobile app database

behaviors using dynamic and static analysis techniques. It delves into query types, performance

implications, and problematic construction patterns. In summary, the research offers practical

guidance for app developers and outlines potential areas for future exploration in the field of

software engineering.

 (Gyorodi et al., 2015) conducted quantitative research on the comparative analysis of two

databases MongoDB and MySQL. In his research paper, he studied load Balancer. He had two

datasets (SQL Dataset and Mongo Dataset) for web applications, one for login and the other

for registration. (Wałachowski and Kozieł, 2020) This article conducted a comparative analysis

of various Android databases, highlighting that there's no one-size-fits-all solution. The choice

of a database depends on your specific app requirements. For basic operations with a small

number of records, most databases performed similarly. However, Realm was notably slower

for extensive record operations, especially for saving, editing, and deleting. SQLite excelled in

editing records, while Realm outperformed in string-related operations. Complex queries had

the fastest response times in SQLite and Object Box, with Object Box being slightly slower.

(Tesone et al., 2022) This paper guides the selection of a database management system

(DBMS) for mobile apps based on specific requirements. With the growth of data types and

improved mobile hardware, NoSQL databases have emerged. SQLite, Firebase Realtime

Database, and Realm are recommended for their simplicity and integration with object-oriented

programming. Firebase Realtime Database may not suit complex search needs. For high

schema flexibility, Couchbase Lite is ideal. In experiments involving various needs, SQLite is

favored due to its alignment with the relational model. (Phiri and Kunda, 2017) conducted

research comparing NoSQL and Relational Databases, focusing on performance, weaknesses,

models, and features. Relational Databases prioritize consistency and security with the ACID

model but face scalability issues, weak performance, and high costs.

3. Databases in Android

According to the Android Studio Documentation, saving data to a database is ideal for

repeating or structuring data. The APIs you'll need to use a database on Android are available

in the Android database sqlite package. SQ Lite Database contains functions for generating,

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.03 No.01 (2025)

604

erasing, executing SQL commands, and accomplishing other standard database administration

duties.

One of the fundamental principles within SQL databases pertains to the scheme an official

declaration outlining the database's organization. The schema's manifestation occurs through

the SQL statements employed in database creation. You might find it beneficial to establish a

companion class, commonly referred to as a contract class. This contract class serves as a

repository for constants that delineate URIs, tables, and columns. By utilizing the contract

class, you can consistently apply these constants across various classes within the same

package. This approach facilitates alterations to a column name in a single location, with the

change reflected throughout your code. An effective method of structuring a contract class is

to position overarching definitions for the entire database at the root level of the class.

Subsequently, you can create inner classes for individual tables, each inner class itemizing the

corresponding table's columns.

3.1 Architecture

SQLITE has seven layers and we’ll go through every layer one by one.

Figure 1 SQ lite architecture

The initial tier is referred to as the Tokenizer. The tokenizer's role involves generating tokens

for a provided SQL query. This component scans through the SQL query in a left-to-right

manner, resulting in the creation of a collection of tokens. A Parser is employed to create a

parse tree by processing a sequence of tokens. In SQLite, the Lemon parser is utilized for

parsing SQL queries. This Lemon parser enables the SQLite C compiler to produce appropriate

C code based on predefined language rules. These language rules are established using

Context-Free Grammar (CFG). During SQL query parsing, SQLite generates a set of

instructions or codes for result generation.

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.03 No.01 (2025)

605

4. ROOM PERSISTENCY LIBRARY

According to the Android Studio Documentation, Room is a Database Object Mapping tool

designed to simplify database access in Android apps. Instead of concealing SQLite intricacies,

Room aims to incorporate them, offering user-friendly APIs for database querying and

compile-time query validation. This grants you the ability to harness SQLite's capabilities

while enjoying Java SQL query builders' type safety. Room functions as an Abstraction Layer

that sits atop an SQLite database. While SQLite employs a specialized language (SQL) for

database tasks, Room streamlines the process of database setup, configuration, and interaction.

Moreover, Room offers compile-time assessments of SQLite statements, enhancing the

integrity of your code. This annotation database designates a class as a database. This class

should be abstract and extend the Room Database. During runtime, you can obtain an instance

of it using Room Database Builder. Within this class, you outline the entities and data access

objects present in the database. Additionally, it serves as the primary entry point for accessing

the underlying connection. This annotation entity designates a class as a database row. A

corresponding database table is generated to house the items within each Entity. The Entity

class needs to be specified in the Database entities array. Every field within the Entity

(including those inherited from its superclass) is stored in the database unless stated otherwise

(refer to Entity documentation for specifics). This annotation Dao designates a class or

interface as a Data Access Object (DAO). Data access objects serve as a pivotal part of Room,

responsible for outlining methods that interact with the database. The class carrying the

Database annotation must contain an abstract method devoid of arguments, returning the class

marked with Dao.

4.1 Architecture

Figure 2 Room DB Architecture

Within Figure 2, the initial components are the UI and View Model, fundamental to Android

Studio. These components manage user interaction and maintain the application's state.

Moving forward, we encounter the Entity class—a fundamental construct that defines a table

in the database. Each instance of this class signifies a row in the table. The Entity class is

equipped with mappings that instruct Room on how to present and engage with data in the

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.03 No.01 (2025)

606

database. In your app, this entity will hold details, about the items in stock such as their names,

prices, and availability. The Data Access Object (DAO) follows a design that separates the

storage layer from the rest of the application. By providing an interface this design principle

aligns with the idea of having responsibilities. The app can utilize these data entities to make

updates or insert records, into the database tables. To achieve this you'll need to create a Room

Database class and annotate it with @Database.

5. Development Architecture

When I incorporate the MVVM (Model-View-View-Model) architecture, into my app it can

impact performance in ways. Using MVVM brings advantages like dividing responsibilities

and improving UI responsiveness with operations. This division simplifies app maintenance

and testing making it easier for me to detect and fix any performance issues efficiently.

However, mishandling MVVM can add complexity and extra work potentially impacting

performance. Neglecting data binding optimization could result in updates and calculations.

5.1 Device profiling

Property Value

Android Version 13

RAM 6.00 GB

Internal Storage 128.00 GB

CPU Octa Core

Size, Pixel Density 6.3 inches, ~537 ppi density

5.2 Development Environment

Architecture Architecture

Processor
Intel(R), Xeon(R), CPU E5-

1650 v3 @ 3.50GHz 3.50

GHz

RAM 16.00 GB

System Type 64-bit Operating System

Window 10

 Language Java

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.03 No.01 (2025)

607

6. CRUD Operations Performance Test

Create

SQLite

 ROOM Library Persistency

Read

SQLite

No. of

Execution

Min.

Time ms

Max. Time

ms

Mean Time ms

1 1 6 3.5

10 7 13 13.5

100 63 76 69.5

No. of

Execution

Min.

Time ms

Max.

Time ms

Mean Time ms

1 3 6 4.5

10 45 61 53

100 303 338 320.5

No. of

Execution

Min.

Time

ms

Max. Time

ms

Mean Time ms

1 0 1 0.5

10 0 1 0.5

100 0 1 0.5

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.03 No.01 (2025)

608

 Room Library persistency

Update

SQLite

 ROOM Library Persistency

Delete

SQLite

No. of

Execution

Min.

Time ms

Max. Time

ms

Mean Time ms

1 0 1 0.5

10 0 3 1.5

100 0 6 3

No. of

Execution

Min.

Time ms

Max.

Time ms

Mean Time ms

1 4 14 9

No. of

Execution

Min.

Time ms

Max.

Time ms

Mean Time ms

1 4 14 9

No. of

Execution

Min.

Time ms

Max.

Time ms

Mean Time ms

1 0 0 0

100 0 1 0.5

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.03 No.01 (2025)

609

ROOM Library Persistency

7. Results & Discussion

The software assesses the utilization of the Room database monitoring the apps efficiency by

tracking its memory and CPU usage on the device. When numerous data entries are added to

the Room database and multiple queries are executed simultaneously it demonstrates the

databases performance. Likewise, when running queries, in SQLite and observing how the

device responds you can see the effects, on RAM and CPU utilization.

Figure 3 Execution time graph

SQLite usually responds, to queries because it interacts directly with the file system in a

manner. On the other hand Room despite having abstraction enhances query execution

efficiency resulting in response times comparable to SQLite. The abstraction in Room offers

advantages such as compile time safety without impact on performance. In some cases, custom

SQL queries in Room can. Even outperform raw SQLite queries but for most applications the

difference in query response time is minimal. Developers can make their choice based on their

requirements and optimization strategies. SQLite is recognized for its transaction processing

due to its design and direct interaction with the file system. It manages transactions effectively.

With its abstraction layer Room maintains a level of transaction processing speed as SQLite

while optimizing SQL queries and providing user friendliness without compromising

performance. In real-world scenarios, the disparity in transaction processing speed between

SQLite and Room is generally insignificant. Developers often consider factors beyond speed

No. of

Execution

Min. Time ms Max. Time

ms

Mean

Time

ms

1 0 0 0

100 10 12 11

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.03 No.01 (2025)

610

when choosing between them such as preferences and additional features offered by Room.

Both SQLite and Room demonstrate CPU utilization for standard database operations. SQLite

performs well in scenarios where resources are limited and tasks are straightforward while

Room maintains efficiency while also providing benefits, like abstraction, compile-time safety,

and ease of use. The variances, in CPU usage are usually small. Rely on the intricacy of tasks

and workloads. SQLite and Room are adept at utilizing storage space retaining their efficiency

as data volume grows. Though storage efficiency may slightly decrease with datasets the

impact is typically minimal. The room, in Room, ensures that SQL queries are checked for

validity during compilation than runtime helping developers catch errors early. By enforcing

typing and query verification during compilation Room assists developers in avoiding compile

time failures and runtime errors associated with raw SQL queries. The structured approach

promoted by Room in managing database-related code within the app makes it simpler to

maintain and comprehend. Through high-level abstractions, Room simplifies interactions with

databases reducing the complexity of database code. Its user-friendly API design enhances

developers' ability to understand and work with it for those managing databases. Additionally,

Room provides features like encryption to bolster data security, an aspect of applications. Being

part of Androids architecture components Room benefits from documentation and community

support. These advantages collectively establish Room as a choice, among Android developers

for managing databases in Android applications.

8. Conclusion

In our study, we tested operations, on both databases in the context of our MVVM application

structure. We found that when running the queries on both databases SQLite performed better

because developers can interact directly with it. On the other hand, Room uses a layer that acts

as a middleman between the database and the developer resulting in slightly lower

performance. This is similar to the comparison between SQL and MySQL where MySQL, like

SQLite's faster but more susceptible to vulnerabilities. As a result, Room is considered the

option as it focuses on user-friendliness and integration with Android components. It prioritizes

safety during compilation. Strikes a balance between convenience and performance while

following best practices. However, for developers looking for control over queries and schemas

SQLite remains a viable choice. Room aligns closely with Androids principles by adding layers

of abstraction over SQLite and integrating View Model and Live Data for data management.

Particularly noteworthy is Room's ability to handle volumes of data without interruptions.

Although Room may have higher time complexity and query compilation compared to SQLite

due to its abstraction layer it offers the benefit of reducing errors and creating connections,

between the database and programming language.

Reference

Dobslaw, D.F., Dobslaw, F., n.d. Examiner Supervisor Author Program Course Field of study

Semester, year.

Gyorodi, C., Gyorodi, R., Pecherle, G., Olah, A., 2015. A comparative study: MongoDB vs.

MySQL, in 2015 13th International Conference on Engineering of Modern Electric

Systems (EMES). Presented at the 2015 13th International Conference on Engineering

of Modern Electric Systems (EMES), IEEE, Oradea, Romania, pp. 1–6.

https://doi.org/10.1109/EMES.2015.7158433

Holla, S., Katti, M.M., 2012. ANDROID-BASED MOBILE APPLICATION. Int. J. Comput.

Trends Technol.

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.03 No.01 (2025)

611

Liu, Y., Gui, J., Wan, M., Halfond, W.G.J., 2017. An Empirical Study of Local Database Usage

in Android Applications, in 2017 IEEE International Conference on Software

Maintenance and Evolution (ICSME). Presented at the 2017 IEEE International

Conference on Software Maintenance and Evolution (ICSME), IEEE, Shanghai, pp.

444–455. https://doi.org/10.1109/ICSME.2017.75

Obradovic, N., Kelec, A., Dujlovic, I., 2019. Performance analysis on Android SQLite

database, in 2019 18th International Symposium INFOTEH-JAHORINA (INFOTEH).

Presented at the 2019 18th International Symposium INFOTEH-JAHORINA

(INFOTEH), IEEE, East Sarajevo, Bosnia and Herzegovina, pp. 1–4.

https://doi.org/10.1109/INFOTEH.2019.8717652

Phiri, M.H., Kunda, D.D., 2017. A Comparative Study of NoSQL and Relational Database 1.

Pujari, Mr.V., Patil2, Dr.R., Sutar, Mr.S., 2020. A Review on Best Practices in Mobile

Application Development. Natl. Semin. “Trends Geogr. Commer. IT Sustain. Dev. 77,

4.

Tesone, F., Thomas, P., Marrero, L., Olsowy, V., Pesado, P., 2022. A Comparison of DBMSs

for Mobile Devices, in Pesado, P., Gil, G. (Eds.), Computer Science – CACIC 2021,

Communications in Computer and Information Science. Springer International

Publishing, Cham, pp. 201–215. https://doi.org/10.1007/978-3-031-05903-2_14

Wałachowski, K., Kozieł, G., 2020. Comparative analysis of database systems dedicated to

Android. J. Comput. Sci. Inst. 15, 126–132. https://doi.org/10.35784/jcsi.2043

