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Abstract 
Elbow bone fractures can be quite difficult to detect correctly and if a fracture goes misdiagnosed, it can be 

treated improperly, resulting in long term complications. Existing approaches such as manual assessment and 

Convolutional Neural Networks (CNN) based models also struggle with detecting subtle fracture patterns, 

leading to the demand for more dependable diagnostic aids. Precise classification and fast detection of bone 

fractures are crucial for efficient clinical diagnosis. Then, traditional techniques, using Convolutional Neural 

Networks (CNNs), have achieved a great progress, but they still struggle in classifying the subtle fracture 

subtypes accurately. To alleviate these flaws, the approach in this paper introduces a Hybrid Vision 

Transformers Convolutional Neural Network (ViT-CNN) model that combines the feature extraction 

capabilities of CNN with the attention mechanisms of ViTs, resulting in high performance improvement. This 

hybrid model benefits from the advantages of both architectures, improving the accuracy and reliability of 

diagnostics. The performance of hybrid model is found better than traditional CNN based approaches with 

respect to accuracy, sensitivity and specificity. Focusing on subtle patterns of fracture, this model is a powerful 

resource for increasing fracture detection accuracy and assisting clinicians with accurate diagnosis. The results 

show that the hybrid ViT-CNN model has the potential to make a substantial positive impact on the future of 

bone fracture detection and subsequently patient outcomes. The overall aims were to assess the performance 

successes of this hybrid approach in identifying elbow bone fractures, and whether this may have scope to 

further improve clinician diagnostic accuracy. 

1. Introduction 

A bone injury like fractures and deformities is an important part of medical imaging study. 

The traditional way of having radiologists review CT scans done for lung cancer is a 

standard practice but has its limitations because of the time it can take and the possibility of 

errors. This fields has been revolutionized by Artificial Intelligence, or more specifically 

Deep learning models such as Convolutional Neural Networks (CNNs) that have been yield 

astonishing accuracy automating the assessment of medical images (X-rays, CT, MRIs) [1]. 

Vision Transformers (ViTs) were recently introduced for computer vision tasks and showed 

remarkable image classification performance by utilizing attention mechanisms, thereby 

enabling global dependencies in images. While CNNs use convolutional filters for local 

features, ViTs take benefit of self-attention to digest larger contextual information. A hybrid 

framework retains CNNs feature extraction ability and at the same time, includes ViTs 

global context processing. Such a synergy overcomes the challenges from each model: fine-

tuning ViTs requires significant computation cost and CNNs compete to learn global 

dependencies that have high time complexity, which is very unsuited for the task of bone 

detection [2]. 

Recently, due to their hierarchical structure which learns textures at lower levels and feature 

abstractions at higher ones, CNNs have become the reference for medical image 

classification, segmentation and detection tasks. However, CNNs suffer from the weak 

ability in modeling long-distance dependencies which is important for detecting subtle 

deformities or fractures. Researchers are investigating complementary models that analyze 

images in a more integrated way to help remedy this. [3] 
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Vision Transformers (ViTs) depend on on self-attention mechanisms which can capture the 

relationships between every pixel in an image which makes it suitable to overcome the 

limitation of CNNs. In contrast to CNNs, ViTs provide a global context, allowing them to 

identify more complex patterns in medical images and detect bones required both local and 

global features therefore in that A hybrid CNN+ViT model performed better as it combine 

significant features from both approaches [4]. 

Hybrid architecture which fuses CNNs and Vision Transformers take advantage of localized 

feature extraction and global context modeling. Whereas, the CNNs localize high-impact 

regions, such as bone edges, fractures and deformations, ViTs preserve the global alignment 

and context of the image. Using both Anglo-centric and bone-centric feature extraction we 

see a boost in detection performance and increase robustness against variations in bone 

structures between patients [5]. Technologically, hybrid models are increasingly being 

adopted in industries such as image classification, object detection, and even medical 

imaging, as they can lead to accurate medical applications, such as automated bone detection 

systems. Whereas the initial computational costs of Vision Transformers hindered their real-

world use, these difficulties have been overcome with the development of hardware 

acceleration as well as efficient algorithms. ViT with CNNs are promising towards attaining 

high-accuracy imaging diagnostics towards bone [6]. 

Convolutional Neural Networks (CNNs) have demonstrated great strides in the initial 

diagnosis of bone fractures, and in combination with Vision Transformers (ViTs), they have 

reached even greater heights. CNNs work great for extracting local features and minor bone 

structures but lack in learning long-range dependencies (it becomes unaware of the entire 

anatomy of the bone). Self-attention allows ViTs to capture the global context across the 

entire image with spatial dependencies. This setup improves the CNN's local feature 

extraction and ViTs' context awareness, leading to higher accuracy, fewer false positives, 

and potential clinical value for detecting bone fractures [7]. 

The hybrid CNN + ViT model shows superior performance in detecting subtle, 

multisegmented, and complex bone fractures, especially in challenging anatomical regions. 

This approach unites the local feature extraction of CNNs with the global context processing 

of ViT, allowing it to effectively grip both global and local image details. However, this is 

particularly beneficial for fractures that are obscured by other anatomy or in situations with 

less obvious anatomical geometry, enabling the model to differentiate between normal and 

abnormal bone structure. Research has determined that this mixed approach significantly 

exceeds that of traditional CNNs on their own providing a useful accurate diagnostic aid to 

applications in clinical settings and thus may well enhance patient care [8]. 

Here are some key findings of this paper: 

1. Improved Diagnostic Accuracy: The hybrid model, which integrates the feature 

extraction capabilities of CNNs with the attention mechanism of ViTs, is shown to 

outperform conventional CNNs with respect to diagnostic accuracy, sensitivity, and 

specificity. 

2. Enhanced Fracture Recognition: Through the accurate recognition of slight fracture 

patterns that are usually overlooked in previously established techniques. 

3. Support for Clinicians: This novel approach improves diagnostic accuracy and acts as 

an aid for clinicians facilitating accurate assessments for better patient care. 

4. Clinical Impact: The hybrid mode, differentiate design and performance has the 

potential to transform diagnostic processes and improve patient outcomes in the 

medical attention field. 
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The rest of the article is structured as follows: Related work is presented in Section II, 

detailed steps of the proposed method are described in Section III, and Results and discussion 

are included in Section IV. Section V: Conclusion Finally. 

2. Related Work 

The detection of bone fractures depends on the manual analysis of X-ray or MRI images, 

requiring a significant amount of time and expertise, leading to errors (especially in the case 

of subtle fractures). To mitigate this, researchers have focused on deep learning, and 

specifically Convolutional Neural Networks (CNN), which learn a hierarchical representation 

of medical images for fracture detection and classification. However CNNs tend to overfit on 

small datasets so to prevent that data augmentation methods i.e. rotation, flipping, and 

shearing are applied to increase the dataset size from few hundreds to around 4000 images. 

The proposed CNN model delivered 92.44% classification accuracy during experimentations, 

which was improved using optimizers such as Adam over traditional techniques such as 

Gray-Level Co-occurrence Matrix (GLCM) and contour extraction based methods with 

training and validation accuracy [9]. 

Fractures in hand bones are common and their accurate and timely diagnosis is important to 

ensure that they heal properly, but the assessment of small fractures based on manual 

evaluation of X-ray images by radiologists can lead to errors. In response to these challenges, 

this work proposes a hybrid deep learning model based on highly effective object detection 

models including YOLO NAS, EfficientDet, and DETR3 to directly localize hand bone 

fractures in X-ray images. In order to solve the problems associated with the quality of the 

dataset, the model is trained on a total of 4,736 hand X-rays which are divided into six 

classes. To enhance detection accuracy and reduce missed diagnoses, the hybrid architecture 

combines low-level feature extraction and high-level object detection. In ablation study, the 

composite of depth wise separable multi-convolutional & ReLU showed the highest score 

amongst the existing algorithms, amounting to 95.84% in testing, making it a commendable 

alternative to conventional CNNs like ResNet50 and EfficientDet, validating the capabilities 

of hybrid models in domains where guided deep learning is used to automate medical image 

analysis tasks like fractures [10]. 

As demand for radiological services has increased, backlogs of unreported studies have led to 

increased risk of missed or delayed diagnoses. In order to do so, AI-based solutions are being 

developed to support radiology workflows. In this study, transfer learning through deep 

convolutional neural networks (CNNs) using pre-trained networks (e.g. Inception v3) for 

fracture detection was employed. It achieved an unprecedented area under the curve (AUC) 

score of 0.954 for fracture classification, from retraining the top layers of the network to 

classify wrist radiographs. The small training dataset challenge was addressed by using data 

augmentation techniques including flipping, zooming and rotation which increased the 

dataset size and improved generalization across changes in wrist position and patient 

anatomy. The model was fine-tuned with several hyperparameters for improved training 

efficiency, achieving sensitivity and specificity of 0.9 and 0.88 respectively. The implications 

of our results are that transfer learning improves computational efficiency while preserving 

diagnostic ability, providing a path towards the automation of fracture detection and a 

solution to backlogs in radiology departments. The model’s scalability to other medical 

imaging applications also highlights its promise in contemporary healthcare [11]. 

Review on edge based bone fracture detection from X-ray images. Edge detection is a 

critical aspect in Image processing to find areas where the brightness intensity changes 

significantly and the canny edge detection is particularly highlighted due to its ability to find 

strong and weak edges as well as its resilience to noise. This distinguishes fracture features 

from this early stage and sets a solid foundation for high-precision classification tasks in the 
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later stage. Methods such as Histogram of Oriented Gradients (HOG) convert the edges into 

structured data, processed by machine learning algorithms to improve detection accuracy. It 

also compares the classifiers, and it concludes that Support Vector Machines (SVM) provide 

the more robust solution as it demonstrates 90% accuracy in the classification of bone 

fractures. One way to do this is to build an automated pipeline that utilizes these techniques 

to make the identification of subtle fractures from medical imaging much more efficient [12]. 

CNNs can distinguish fracture edges even in noisy images by applying strong image 

segmentation and feature extraction algorithms. Median filter and other preprocessing stages 

are used to remove noise from input images even though certain edge information is lost 

because we want to increase image quality. The experimental findings confirm that CNNs 

surpass the capabilities of traditional techniques like Sobel, Prewitt, and Canny edge 

detection, primarily in identifying subtle fractures. The above paper also proposes a new 

Spatial Fuzzy C-Means (SFCM) clustering approach which substantially improves fracture 

localization and segmentation using the spatial correlation of the pixels themselves. Overall, 

the combination of SFCM with CNNs promotes the accuracy and reliability of fracture 

detection, offering a global diagnostic framework to categorize fractures based on their 

stages. This system automated takes less time to diagnosis but still provide a reliable and 

accurate result for bone fracture detection [13]. 

Image preprocessing is focused on in this study to boost bone fracture detection systems. 

Gaussian filtering reduces noise while preserving sharp edges and contrasting features, 

making sure that fracture areas are well visualized. Sobel, Prewitt, Roberts, and Canny edge 

detection methods achieve segmentation of bone regions and separation of features related to 

fracture, all the while Canny edge detector is found be the most robust among all owing to its 

noise resistance and retention of fine details, the latter of which is important in the detection 

of subtle fractures. The study further investigates segmentation methods, reconciling the bone 

shaft to a common axis to facilitate systematic recognition of fractures. Addition of Hough 

Transform also enables the identification of a straight line and precise localization of 

fractures. The automated process aids detection whilst reduce workload on medical experts 

providing an excellent process for clinical applications [14]. 

The predefined combination of edge detection and segmentation techniques provides good 

accuracy for the segmentation of the fracture detection. Edge Detection: Preprocessing steps 

(such as noise reduction and image enhancement) are applied to enhance the quality of X-ray 

and CT images. The modified Canny edge detector with histogram equalization for enhanced 

contrast was the best among the methods evaluated and could detect thin fracture lines, 

which were not possible with traditional Sobel and Prewitt methods. Image processing 

strategies were employed to segment the affected bone region, using region-based and edge-

based techniques to suppress the surrounding landscape for more focussed analysis. After 

segmentation, the classified images were classified as either fractured or non-fractured using 

classifiers such as SVM and KNN, and they achieved the accuracy rate of 85%. The system 

shows promise for clinical deployment, but the authors point out that cross-modal fracture 

detection, particularly from low-quality CT images, need to be further improved for better 

accuracy [15]. 

The conventional convolutional models used to derive the fracture detection have limitations, 

which is why this study utilizes the Hybrid-Attention (HA) mechanism integrated within the 

YOLOv8 architecture to tackle those restrictions. Attention mechanisms, including channel 

and spatial attention, are combined in this proposed architecture with the idea of focusing on 

the important features in X-ray images. So channel attention increases the important signal 

channels and spatial attention marks more critical areas, leading to robust extraction of 

features that are strongly useful for the process of finding minor cracks or fractures in 
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complex domain images. What is more, the nomenclature distinguished the Cross-Stage 

Partial (CSP) architecture included in the YOLOv8 backbone, improving the gradient flow 

and minimizing computation overhead, indicates the model efficiency for high-dimensional 

medical datasets such as FracAtlas. This design not only allows for localization and 

detection at the fracture tips, but also at the decoupled head. Including experimental 

outcomes yielding a 20% improvement on mAP 50, optimized computing cost density, and a 

relevance to real-time clinical scenarios [16]. 

CNNs based architectures detect fractures for limited bone areas including calcaneus, wrist, 

and thigh. This demonstrates that CNNs can be used across multiple datasets by simply 

resizing and normalizing your inputs in a preprocessing step. For example, calcaneus 

fracture detection using the SURF method for feature extraction, alongside ResNet-based 

architectures resulted in an accuracy of 98.0%, demonstrating the high potential for transfer 

learning to reduce both the overall training and processing time of models while maintaining 

diagnostic accuracy. It is also worth noting that the study investigates the application of 

object detection CNNs on wrist fractures and even matches the orthopedic specialty with this 

with the state-of-the-art AUC that reaches ~96%. We also used more advanced preprocessing 

techniques like horizontal flip and aspect ratio preserving rescaling to make model robust. 

The results highlight the increasing role of deep learning approaches for automating 

diagnostic work in clinical radiology [17]. 

In this Study, an image processing framework for bone fracture detection with X-ray and 

computed tomography (CT) images is proposed. The process starts with its preprocessing 

algorithms, including converting colored images to grayscale, followed by median filtering 

techniques to suppress the salt-and-pepper noise while also keeping important features intact. 

First, it ensures that edge detection is performed correctly in this case, using the Sobel 

method that designates points with a high variation in intensity as being a fracture line/edge. 

A K-means clustering was used on the regions in both color and intensity space to separate 

the fractured regions for segmentation, where a high precision in extracting fracture zones 

was achieved. Moreover, using a Gray Level Co-occurrence Matrix (GLCM), textural 

features (entropy, contrast, and homogeneity) were extracted from the images and classified 

with decision tree and neural network models, and reached an accuracy of 85% for 

classifying the images. This combined algorithm of preprocessing, segmentation and 

extraction also indicates a move towards automation of bone break detection [18]. 

In this study a novel dual-phase approaches for the detection and classification of diabetic 

retinopathy (DR) lesions is proposed. Segmentation was performed using the JSeg model 

built upon the ResNet-50 backbone of DeepLabv3+ yielding DSC and weighted IoU index 

results of 0.9820 and 0.9991, respectively, for micro aneurysms, indicating precision for 

even small lesions. With this innovative approach it outperforms current models, while 

dealing with issues of lesions with varied size and shape during segmentation. In the 

classification step, ResNet-101-based features (extracted) were optimized with the 

Equilibrium Optimizer (EO) and used in classification with Support Vector Machines (SVM) 

and neural networks (NNs). The model produced a classification accuracy of 99.97% for 

Grade-4 lesions using 10-fold cross-validation. The JSeg model achieved significantly better 

segmentation results compared to MSRNet, DeepLabv3, and RefineNet, and the detection of 

micro aneurysms was more reliable. Compared to the RefineNet (Optic Disc: DSC = 

0.9183), the JSeg model's DSC (Optic Disc DSC = 0.9978) showed that JSeg can segment 

more complex structures without over segmenting. Neural Network classifiers performed 

remarkably on the classification phase as well, attaining mean ROC of 0.98 for all 10 folds. 

The model improved classification accuracy and ensured model stability across diverse 

datasets by helping to overcome common issues such as data imbalance and inadequate 
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feature selection through the incorporation of data augmentation and EO. These results 

establish a new standard for automated lesion classification in medical imaging [19]. 

This article explores the Performance of Vision Transformers (ViTs) and transfer learning in 

detecting kidney conditions such as cysts, stones, and tumors from CT radiographs. The 

dataset contains 12,446annotated images and enables strong representation for all diagnostic 

categories. Different pre-processing steps like image scaling, Z-normalizing and random 

rotation were used in this research model to improve its performance. They compared three 

of the best ViT variants (EANet, CCT, and Swin Transformer) against of deep learning 

models such as VGG16, ResNet50, and Inception v3. Hyperparameter tuning was to get 

classification accuracy for each model. The Swin Transformer recorded the best precision of 

0.996, recall of 1.000 with 0.996 F1 score for kidney tumors among the models, resulting in 

an accuracy of overall 99.30%. The CCT and VGG16 also achieved impressive accuracies 

of 96.54% and 98.20%, respectively. Unlike these models, ResNet50 and Inception v3 

exhibited weaknesses and only achieved on their best performance of 61.60%, as it was 

unable to capture fine-grained features. In addition, Swin Transformer and VGG16 provided 

better localization of abnormalities, allowing for more interpretable results as illustrated in 

the GradCAM visualizations. This study demonstrates the potential of using network 

architectures like Vision Transformers, specifically Swin Transformer to aid in the imaging 

diagnostic process [20]. 

3. Proposed Methodology 

The proposed model Hybrid ViT-CNN that utilizes the advantages of ViTs and CNNs in a 

different manner for performing accurate detection of elbow bone fractures. The ViT 

observes the entire image and learns relationships holistically and the CNN portion of the 

model aims to recognize granular, rich features like edges and texture. Thanks to this 

combination, the model can recognize very small fractures, since it learns to see not only a 

general structure of the elbow, but all its details. The model creates highly accurate 

predictions by combining the local and global features, which is why it is a promising 

diagnostic tool for elbow fracture. It covers a gap that traditional practices couldn't fill, 

which could improve medical imaging. Figure.1 Shows the Integrated CNN and ViT for 

accurate elbow fracture classification. 
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Figure.1 Flow Chart of Proposed Model 

It starts with the input of elbow bone X-ray images and goes on to preprocess the data as 

shown in Figure.1. It then uses parallel CNN and ViT networks for feature extraction to 

utilize both local and global information. The feature fusion layer integrates these features 

and then passes it through a fully connected layer to obtain a classification. At last, the 

model returns fracture diagnosis that is whether or not there exists any fracture of elbow 

bone. 

3.1 Hybrid ViT-CNN Model Architecture 

Hybrid Feature extraction using ResNet-101 and tuning by the Equilibrium Optimizer (EO) 

was performed, followed by classification with Support Vector Machines (SVM) and neural 

networks (NNs). The model achieved a classification accuracy of 99.97% for Grade-4 

lesions using 10-fold cross-validation. 

Hybrid ViT-CNN is intended to take advantage of both CNN to acquire the local information 

and Vision transformers to acquire the global information. It is setup structure with: 

 CNN Layers: Get low-level details such as textures and edges. 

 ViT Layers: Investigate relationships throughout the entire image using 

self-attention techniques. 

 Feature Fusion: Combines CNN and ViT output to generate a single 

feature vector for classification. 

In the proposed methodology as shown in Figure.2 we represented the whole architecture of 

the Hybrid ViT-CNN model in detail. 
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                                                      Fig.2 Hybrid ViT CNN Architecture of the Proposed model 

The proposed method of identifying elbow bone fractures takes an elbow X-ray image as the 

first step. The first thing we need to do is proper preparation preprocess the images which 

represents some standardization of the data, such as scaling and normalization. Resizing 

ensures that every input image follows the same proportions, which facilitates the model 

few-shot representation. Normalization improves the training convergence of the neural 

network after scaling all the pixel values to a common range. The main goal of this stage is 

to prepare the X-ray image well for the next step (feature extraction) and maintain the 

accuracy and validity of the diagnostic information of the image. 

After extracting features, the outputs of the CNN and ViT layers are aggregated into a single 

augmented feature representation. This stage of feature fusion fuses both localized and global 

features which in result makes the model aware of the overall input X-ray. Lastly, the fused 

features are fed to Fully Connected layers for classification. These layers use non-linear 

activation functions to capture complex patterns and relationships in the data and can be used 

to classify or verify if a fracture is present in the input X-ray. The final conclusion is the 

results of this categorization, which allows us to provide a correct and reliable diagnostic for 

the presence of a fracture or absence of it. 

To understand the hybrid model, break the architecture explanation into three parts. The first 

part introduces the CNN, highlighting its capacity to produce spatial features in a sequential 

manner. The second part explains on the Vision Transformer  (ViT) encapsulates the global 

dependencies and contextual relationships. The last part of them works on Feature Fusion, 

describing how to blend the results of CNN and ViT outputs to unify the advantages of both 

modalities and improve the performance of the model as a whole. 

3.2 Convolutional Neural Network Architecture 

The model as shown in Figure.3 CNN Layers consists of an input layer that first receives an 

image of 224x224x3 in height, width, and RGB channels, respectively. The input to our first 

convolutional layer consists of 64 filters, with a kernel size of 3x3, stride of 1, and padding of 
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1, which helps extract low-level features such as edges and textures, keeping the input 

dimensions intact (224x224x64). We then apply an activation function (ReLU in our case) to 

introduce non-linearity. The spatial dimensions are halved with a max-pooling layer that has 

a 2x2 kernel size and stride of 2, producing an output of 112x112x64, and this makes the 

model quite efficient. Another layer of convolution followed by a new activation activation 

function, so the second convolutional layer uses 128 filters of the identical kernel size, stride, 

and padding, resulting in deeper and more complex features to be extracted, with dimensions 

112x112x128. The next layer is another ReLU activation followed by the second max-

pooling layer which reduces the dimensions to 56x56x128, squeezing the features while 

keeping important spatial information. These multiple layers create hierarchical features 

from the input image that can be used in a classification (or decision) layer, with many 

individual neurons aggregating grouped output. 

 

 
Figure.3 CNN Layers of the Hybrid ViT-CNN Model 

 

 (   )(   )

 ∑

 

∑

 

 (       )

  (   )                                                                   ( ) 

 x(o,v): Input image (pixel value at (o,v) position) 

 f(m,n): Convolution Filter(kernel) 

 ∑m∑n: The summation calculates the weighted total of pixel values under the filter 

position as it moves across the image. 

 This operation allows the model to recognize features like edges and textures, 

important for recognizing fractures in medical images. 

 A max pooling is used after each convolutional layer which reduces the size of feature 

maps in the half retaining the most highlighted features, reducing computing 

complexity, and to not over fit. 

  ( )
    ( )                                                                                                                             ( ) 

3.2.1 ReLU Activation 

We use Rectified Linear Unit (ReLU) as the non-linearity activation function so that the 

model can learn complex features. 

 ( )
    (   )                                                                                                                       ( ) 
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This forces the negative values of pixels to be zero and focuses a network on the meaningful 

specters [21]. 

3.2.2 Local Feature Detection 

CNN Layer Feature like edges and texture are local feature which are combined to formulate 

higher level of patterns i.e in case of pattern detection in a radiograph and thus performed 

quite excellently in case of fracture detection [22]. 

3.3 Vision Transformer 

Vision Transformer [2] in Figure.4 exemplifies how CNNs can be improved to utilize global 

context as well as long-range dependencies, which are particularly important for detecting 

fractures with nuanced patterns or extending over large regions. 

 
Figure.4 ViT Model of the Hybrid ViT-CNN Model 

The module is as shown in Figure.4 initialized using a pre-trained model, typically trained on 

vast datasets. This model provides a strong foundation of images features that can be 

optimized for certain applications such as fracture detection. 

It allows dividing the input image into fixed-size patches (like 16x16 pixels) and embedding 

each patch into a vector representation so that the image area can be independently analyzed 

for tiny fractures while inter-patch correlations can also be learned [23]. 

Self-Attention Mechanism: Whereas CNNs look at local patches and regions of interest, ViTs 

model relationships between all patches according to self-attention; Instead of reading the 

entire image, this helps the model to only pay attention to the relevant parts across the image.  

         (     )

        (
   

√  

)                                                                                          ( ) 

Here, dk is the dimensionality of the keys and Y, E and A are the respective query, key and 

value matrices derived through patch embeddings. This approach allows the model to gain a 
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more complete understanding of the image, by bringing together proximity (local) and 

distance (global) relationships [24]. 

3.3.1  [CLS] Token for Global Features 

 ViT uses a [CLS] (classification) token, a learnable embedding that summarizes 

global context of the image 

 The output for the [CLS] token, which is a comprehensive representation of the 

image post-passing through the transformer layers, accumulates information from 

every patch [25]. 

3.4 Feature Fusion  

The ViT module then passes local features obtained by the CNN module to a feature fusion 

technique to merge them with the global features. This enable both coarse and fine level 

features giving a accurate identification of fractures [26]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.5 Feature Fusion Layer of Hybrid ViT-CNN Model 
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Feature Fusion as showing in Figure.5 incorporates local patterns from CNN layers and 

holistic dependencies captured by the global context from the ViT [CLS] token to perform 

precise identification of fractures. 

                                                                                                                  (5) 

Here in this combination generates a fused feature vector of the CNN's spatial feature maps 

and the attention-based representations of the ViT, enhancing the fractural recognition 

performance. 

3.4.1 Concatenation of Features 

 To get feature vector, CLS token from ViT and CNN layers prior to flattening all 

outputs are concatenated. 

 The ViT [CLS] token remains sensitive to global and contextual relationships across 

the entire image space, while CNN features only display setting-relational spatial 

features like edges or textures or patterns. 

 As a result, the model can benefit from both large-scale dependencies (very general) 

and small-scale properties (very specific), which is critical in the domain of medical 

imaging [27]. 

3.5 Fully Connected Layers 

 Once the concatenation is done on the 2 feature vectors, the resulting ones 

traverse through a 512-unit fully connected layer. It learns to aggregate per 

partition through a linear layer that improves the features interactions by 

minimizing the complexity of the feature space. 

 To capture and learn complex patterns, the Rectified Linear Unit (ReLU) 

activation function introduces non-linarites in this model. 

3.6 Binary Classification Layer 

 

Figure.6 shows the binary classification layer of the proposed hybrid ViT-CNN model, which 

classifies the input image into a fractured elbow bone or a non-fractured elbow bone. The 

model uses features from the previous layers, and sends them to fully connected layers to be 

classified. Finally, the model gives a prediction whether the object being labeled is either 

Fractured or Not Fractured (as seen in the figures labeling the output). 
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Figure.6 Binary Classification Layer of Hybrid ViT-CNN Model 

 This improves feature extraction because it ensures that only positive values go to the 

next layer. 

 The second fully connected layer takes the output from the first fully connected layer 

and processes the data further. This enables the model to condense the low-

dimensional features into one score, thereby allowing the model to predict whether 

there is a fracture or not (as depicted in the Figure.6). 

 The output from the last layer indicates class probabilities, with a higher probability 

indicating a stronger likelihood of a fracture. This is a classification job that is 

optimized through training with cross-entropy loss [28]. 

 For controlling the Class score (for instance, fractured or Not), the last classifications 

layer applies onto the procedure attributes:  

                                                                                              (6) 

Where: 

o H:Input 

o W2: Final classification layer weight matrix. 

o B2: Bias vector. 

o O:output 

Artificial intelligence models derive an equation for binary classification task as shown 

below 𝑂=𝑊2𝐻+𝑏2. Here, 𝐻, the features that are extracted after the previous layers 

of the model and these capture the most important information about the input. These 

features are fed through a fully connected layer with learned weights W2 and bias b2, 

allowing the model to adjust predictions. The outcome 𝑂 is a score measuring the 

probability that the input is from one of the two classes. To give this score a meaning, 

it is typically converted into a probability through an activation function (for binary 

classification, we commonly use sigmoid function), this allows the model to correctly 

label the data as belonging to one of the two classes. 

3.7 Cross-Entropy Loss Function 

The Cross-Entropy Loss computes the difference between the predicted probabilities and true 

labels (y). It is defined as: 

            (   )   ∑      ( ) 
 
                                                               (7) 

Where: 

(q) i: True label for class g(0 or 1 for binary classification). 

( ) : Predicted probability for class g . 

(g): Number of classes  

The loss ensures that the model learns to assign higher probability to the correct class by 

penalizing inaccurate predictions more severely. 
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4. Experiment and Results 

We used the MURA (Musculoskeletal Radiographs) dataset, being one of the largest 

publicly available sets of radiographic images designed for identifying pathologies in 

musculoskeletal disorders[29]. Therefore, we focused this investigation on the elbow X-ray 

subset of the dataset as it was created specifically to identify fractures and abnormalities in 

elbow radiographs. Musculoskeletal disorders are a leading global health challenge, affecting 

over 1.7 billion people worldwide and contributing to chronic pain and disability. The 

elbow-specific data from MURA dataset was very helpful for obtaining the CNN-ViT hybrid 

model I built and evaluated with great results for fracture diagnosis. Using this dataset, my 

algorithm would improve on the automated diagnostic tools and be especially useful in 

places where there are not enough qualified radiologists which would further the depth of 

healthcare and improve efficiency.  

Table.1 Details of MURA Dataset [29] 

Learning Training Testing 
Total 

ImagesType 

Normal 

Images 

Abnormal 

Images NormalImages AbnormalImages 

ElbowBone     1094 660 92 66 1912 

Table.1 shows the details of MURA dataset[29]. It shows that there are 1754 images for 

training in which 1094 are normal and 660 are abnormal, and for validation there are total 

158 images were used in which 92 normal and 66 abnormal images. So total images used for 

elbow bone detection are 1912.  

Table.2 Data for Augmentation of the Proposed Model 

Augmentation Performance Value 

Rotation is 30% 

Width is 20% 

Height is  20% 

Shear is  20% 

Zoom is  20% 

Horizontal Flip is True  

Fill Mode is  Nearest 

The various data augmentation methods employed to enrich the dataset for training the hybrid 

ViT-CNN model are described in Table 2. Horizon flipping, 30 degree rotation, 20% width 

and height shift, 20% shear and zoom ranges was applied to the data in order to increase the 

images diversity. These augmentations mimic characteristics of real-world environments, 

aiding the model to generalize better in varied input situations. Fill mode nearest helps to fill 

empty space in many transformations. 

Table.3 Dataset details Proposed Model 

Class Name 
Number of Images 

Dataset Splitting 80-20 

Ratio 

BeforeAugmentation AfterAugmentation Training Testing 

Fracture 2000 4000 3195 805 

Not Fracture 2000 4000 3205 795 

Total 4000 8000 6400 1600 

Training Images 6400 

Testing Images 1600 
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Dataset used for this study has been divided in Table.3. There were originally 2,000 images 

for each of the “Fracture” and “Not Fracture” classes. By doing augmentation, the whole 

dataset was increased to 4,000 images per class (i.e., 8,000 images). Data was divided into 

80-20 into train and test. A total of 6,400 images were used for training (3,195 for 

"Fracture" and 3,205 for "Not Fracture") and 1,600 images were used for testing (805 for 

"Fracture" and 795 for "Not Fracture"), thus providing balanced representation of images in 

the training and testing data used to evaluate the model accuracy. 

Figure.7 Data Augmentation for 10 sample Images from Proposed Model Dataet 

 
The Figure.7 shows images of elbow bone fractures, before and after the augmentation. The 

first ten images are of the original dataset that exhibit the inherent and brute visual attributes. 

The next ten images show the augmented versions created by applying transformations 

including rotations, zooms, shifts, shears, and horizontal flips. By simulating different 

conditions for each image in a training epoch, these augmentations increase the diversity of 

the dataset, which allows the model to generalize better. It demonstrates the power of data 

augmentation in expanding the dataset to be more diverse and generalized. Here this 

visualization highlights how preprocessing plays a very critical role in improving the 

reliability of fracture detection models. 

A Kaggle notebook was used to build and test the proposed model along with its GPU100 

enablement to speed up testing and training. A Core I7 8th gen powered machine with 

Windows 10 was used for experiments. 

Table.4 Hyper Para Meter of Proposed Model 

Hyper parameter Values 

Batch Size 16 

LR 1e-4 

Number of 

Epochs 
10 

Image Resize (224, 224) 

Loss Function 

Cross Entropy 

Loss 

Optimizer Adam 

When using a batch size of 16, the model reads 16 images per training iteration, as seen in 

Table.4 a learning rate of 1e-4 means that the model will adjust its weights no more than 

0.0001 at a time during optimization. Note: It is trained for a total of ten epochs (one epoch is 

a complete pass for the training dataset). All input works are resized to the size of (224, 

224). The Adam optimizer is used to minimize the loss function with an adaptive learning 

rate depending on the momentum of the gradients viewed until that moment. In the case of 

classification problems, we use the Cross Entropy Loss Function, which is most appropriate 

to solve these types of problems. 

In this section, we present the results of the proposed elbow bone fracture detection model 

based on hybrid CNN-ViT. It is evaluated on the basis of key measures using accuracy, 

precision, recall, and, F1-score which are obtained from the experiments done over the 

Before 

After
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MURA dataset. A comparative analysis is provided to show that the model can, accurately 

and identified efficiently, reliably identifying the elbow fractures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.8 Confusion matrix of Hybrid ViT-CNN Model 

Our Proposed model which is based on Elbow Bone Fracture Detection Using Hybrid ViT-

CNN Model has confusion matrix in Figure.8 which is showing excellent performance on 

the test dataset. In the model, out of the 1600 images that were used, it correctly classified 

794 healthy cases (true negatives) and 805 fractured cases (true positives), while it did one 

healthy case classified as fractured (false positive) and did not leave any fractured case out 

(false negatives). This suggests an almost perfect classification with an extremely low false 

positive rate and no false negatives, both of which are critical in medical diagnostics. The 

model appears quite confident about the result, with visualized high accuracy, precision and 

recall shown in the matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.9 Loss over epochs graph of Hybrid ViT-CNN Model 
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The graph in Figure.9 shows the loss of the proposed Hybrid ViT-CNN model to the epochs 

in training and validation. This is per the validation loss (orange line) and training loss (blue 

line) both plot lines show positive downward trends - suggestive that our model is effectively 

minimizing learning errors. 

In Figure.9 showing 10 epochs for the training and validation loss of proposed “Elbow Bone 

Fracture Detection Using Hybrid ViT-CNN Model ". The rapid decline in both training and 

validation loss suggests that the model quickly learns the patterns in the data and 

significantly improves performance during the initial epochs. Both train and validation losses 

stabilize after 2nd epoch and they do go down as they progress over the epochs but the loss 

of model remains consistent low for each epoch. In both datasets, the fact that the loss is low 

and does not evolve significantly against epochs suggests that the model is well-optimized: 

there is no overfitting or underfitting as the validation loss follows training loss very closely. 

Thus, the tangential appearance of these curves indicates the model's ability of generalization 

on the unseen set, which is quite reliable and robust for detecting elbow bone fracture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.10 ROC Curve of Proposed Model 

ROC curve in the Figure.10 for "Elbow Bone Fracture Detection Using Hybrid ViT-CNN 

Model" demonstrates excellent model performance. True Positive Rate (sensitivity) against 

False Positive Rate in the ROC curve, proposed model has AUC = 1.0. Here, such a 

perfectly accurate classification shows that it must be an ideal classification because it means 

that it is possible to distinguish perfectly shattered cases from healthy elbow cases. 

A steep step curve towards the top left indicates that the model is obtaining a high true 

positive rate with an almost zero false positive rate. Such a result is desirable in medical 

applications, where both sensitivity and specificity are essential. The ROC curve illustrates 

strong performance of proposed model to detect fractures of the bone with no false positives. 

Table.5 shows the results that detecting elbow bone fractures, the obtained accuracy of the 

hybrid model ViT-CNN was 99.93%. It accurately detected 794 out of 800 healthy cases and 

805 out of 800 fractured cases out of a total of 1600 images with only one minor error 

(classifying a healthy case as fractured) and with no missed fractures. Its precision, recall, 

and F1-scores were almost perfect, with the averages being about 99.9% .This model can be 

used to accurately detect even the minutest fracture patterns making it a good supportive 
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asset for doctors to diagnose fractures improving the diagnosis quality & therefore improving 

the patient care round the clock. 

Table.5 Performance Evaluation of the Proposed Methodology 

 

PerformanceParameters 

Precision Recall F1-

S

c

o

r

e 

Support 

Negative 99.88 1.0 99.93 795 

Positive 

 

1.00 99.88 99.94 805 

Accuracy 99.93 1600 

Macro Average 99.94 99.94 99.94 1600 

weighted Average 

 

99.90 99.99 99.90 1600 

In Table.6 based on the results, the Proposed Hybrid ViT-CNN model shows an impressive 

improvement, achieving 99.93% accuracy, 99.88% precision, 100% recall (sensitivity), and 

99.94% F1-score, which are statistically significantly winning other methods. For instance, 

the hybrid deep learning model [30] achieved 84.99% accuracy and 80.44% F1-score, and 

VGG-16+ViT model [31] achieved 82.88% accuracy along with 88.24% recall. The 

Inception-ResNet-V2 model [32]followed behind with an 79.6% accuracy. The ability of the 

Hybrid ViT-CNN model to provide highly accurate and reliable diagnostics outperforms 

those of other methods and establishes a new reference point for fracture detection elbow 

classification tasks.The comparison results are shown in Figure 11. 

Table.6 Comparison of Specific deep learning methods on the elbow bone classification task 

in binary classification 

Figure.11 Comparison of Performance Metrics across Various Models for Detecting Elbow 

Bone Fractures 

The performance metrics for different models for elbow bone fracture detection compared, 

accuracy, precision, recall/sensitivity, and F1-score are shown in Figure.11 using a bar chart. 

The proposed Hybrid ViT-CNN has the highest values for all the metrics, with an accuracy 

of 99.93% and recall 100%. More importantly, it also highlights the superiority of the 

proposed model compared with existing methods. 

Ref# Year Dataset Accuracy Precision  Recall/Sensiti

vity 

F11-score 

Hybrid deep 

learningmodel 

[30] 

2025 MURA 

 

0.8499 0.7676 

0.845 

0.8044 

VGG-16+ViT 

model [31] 

2024 0.8282 

 

0.78 

 

0.8824 

 

- 

Inception-Resnet-

V2[32] 

2024 0.796 

 

- - - 

Proposed Hybrid ViT-CNN model 99.93% 99.88% 100% 99.94% 
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4.1 Advantages and Applications 

Proposed hybrid model combines the advantages of Convolutional Neural Networks (CNNs) 

and Vision Transformers (ViTs), working together as a powerful tool to detect bone 

fractures. While CNNs excel in detecting intricate local patterns in images, ViTs introduce a 

larger context via attention heads. The two combine to form a model capable of detecting 

even the most subtle patterns of fracture with impressive accuracy. This combined approach 

reduces the likelihood of misdiagnosis, and provides clinicians with timely and reliable 

insights, making it a tool that can be pragmatically leveraged to improve patient outcomes. 

5. Conclusion 

This study proposed a hybrid ViT-CNN model for precise elbow bone fracture detection, 

leveraging a benchmark in musculoskeletal radiographs the MURA dataset. This approach 

allows the model to leverage the detailed spatial feature extraction from CNNs along with 

global attention capabilities from ViTs to achieve a state-of-the-art accuracy of 99.93%. To 

improve generalization to different data variations, data augmentation was applied. These 

findings underline the strength of the hybrid approach in the medical imaging domain, 

especially for automated diagnostic systems. Further research on extending this approach to 

other bone fracture types, incorporating multi-modal medical imaging data for more accurate 

diagnosis, and adapting the model for real-time clinical application is possible. Moreover, the 

application of explainability techniques may increase interpretability of the model's 

predictions for healthcare professionals. 
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