

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW
Vol.02 No.04 (2024)

372

COMPARATIVE ANALYSIS OF MOBILE APPLICATION DEVELOPMENT

FRAMEWORKS

Najam Ur Rehman
1
, Fawad Nasim

1,*
, Asad Ali

1
, Hijab Sehar

2

1
Faculty of Computer Science and Information Technology, The Superior University, Lahore

2
 Riphah School of Computing and Innovation, Lahore

*Corresponding author: fawad.nasim@superior.edu.pk

Abstract
This study examines some of the fields like health, education, and commerce, where there is an increased need for

the use of mobile applications due to technological enhancements in the mobile business world. The purpose of the

research is to compare various mobile application development frameworks while focusing on the functional,

performance, and cross-mobile application requirements. Its methodology includes assessing several widely used

frameworks in terms of development speed, cost, usability, and adaptability to different platforms. The results

advocate for the fact that, while every framework has its strengths and weaknesses, some of them perform

beneficially when it comes to Delivering cross-platform apps with faster development cycles and better scalability.

In conclusion, the paper’s focus is on the right choice of development framework depending on the given project

requirements, as well as the importance of technical and business factors to achieve the best results in app

performance, minimize costs, and provide a high-quality user experience for iOS and Android platforms, if

necessary.

Keywords: Mobile Application, Cross Platform, iOS, Android

1. Introduction

1.1 Background

Mobile applications have experienced exponential growth in the recent past due to development

in mobile technology across various sectors ranging from healthcare, education, commerce, and

finance to entertainment. As the data presented by Statista show (2023), the Google Play Store

offered 3.8+ million apps for download, while the Apple App Store had approximately 2 million

as of the end of 2023. As the need for new, adaptive, and high-quality mobile applications that

can meet the constantly growing customers’ expectations has been using mobile applications,

developers have been looking for efficient tools and frameworks that can help create new

applications, and extend existing mobile applications applications quickly, cheaply, and

elastically. The choice however is where to get the right mobile application development

framework that satisfies the normal functional and performance need for the application apart

from supporting cross application development for both the iOS and the Android platforms.

Historically, the focus in the development of applications for mobile platforms was mostly on

native development (the creation of applications exclusively for one platform using the

languages of this particular platform, for example, Swift or Kotlin). As it is known, native apps

offer the highest performance, but they have to be developed for each of the platforms, which

contributes to time and resources consumption. In order to overcome these problems several

cross-platform frameworks have appeared, which provide the developers with the opportunity to

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW
Vol.02 No.04 (2024)

373

create an application that can be run on several platforms. Some of the most popular frameworks

that are being used include React Native, Flutter, Xamarin and Ionic. These frameworks offer

multiple qualities like performance, development convenience and compatibility across

platforms; that is why many mobile developers enjoy them (Williams & Thompson, 2023; Smith

et al., 2022).

1.2 Rationale

Over time, as the mobile app development ecosystem progresses, it becomes crucial for

developers to select their tools that consider performance, development time, and compatibility

with other platforms. Since each framework provides different benefits and disadvantages,

deciding which approach defines the most suitable for one project is a complex task. For

example, while native development is known to provide the best performance it requires the

creation of different code bases for different platforms which in turn leads to high development

costs and long time to market. On the other hand, cross-platform frameworks such as React

Native and Flutter seem to help developers build an application with low costs by doinga single

code base for two different platforms, iOs and Android., but it is not devoid of some

disadvantages such as loss of optimal performance and utilization of special features of a special

platform (Brown & Clark, 2022). The justification for this study is to offer a comprehensive

evaluation of these frameworks for the purpose of assisting the developers and the businesses to

identify appropriate frameworks to undertake their respective projects in accordance with their

requirements.

1.3 Problem Statement

The challenge that developers of new generation mobile apps face in the present time is the

abundance of mobile application development frameworks. In general, it will be seen that despite

the fact that many frameworks are claimed to have advantages in terms of development speeds

and costs there is no unique consensus in relation to the framework which offers the best

performance, scalability and user experience. This problem is further exacerbated by the fact that

most frameworks in use are relatively new and that while making decisions, developers fail to

get exhaustive, accurate and evidence based information. Lack of systematic comprehension of

both the power and the drawback of the approaches allows choosing inferior frameworks that can

negatively affect the performances of the application or loads down the development and the

maintenance at an unreasonable price.

Therefore, the issue is the absence of an adequate comparison that identifies and compares the

main mobile development frameworks taking into account essential aspects like: platform

compatibility, performance, available support from the related community, and cost efficiency.

1.4 Aim

The aim of this study is to conduct a comprehensive comparative analysis of the most widely

used mobile application development frameworks—Native Development, React Native, Flutter,

Xamarin, and Ionic. The study will assess each framework based on performance, development

speed, platform compatibility, community support, and cost-effectiveness. The goal is to provide

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW
Vol.02 No.04 (2024)

374

developers with data-driven insights that will guide them in choosing the most suitable

framework for building high-performance, cross-platform mobile applications.

1.5 Research Objectives

The primary objectives of this research are:

1. To evaluate the performance of each framework, including speed, responsiveness, and

resource consumption, across different types of mobile applications (simple apps vs.

graphically intensive apps).

2. To assess the platform compatibility of each framework, including how well they

support cross-platform development (iOS, Android, and Web).

3. To compare the development speed and ease of use of each framework, considering

factors such as learning curve, code reusability, and the availability of development tools

and libraries.

4. To examine the community and ecosystem surrounding each framework, including the

size and activity level of the developer community, the availability of third-party

libraries, and support resources.

5. To compare the cost-effectiveness of each framework in terms of development time,

resource allocation, and long-term maintenance.

1.6 Research Questions

This research seeks to answer the following key questions:

1. Which mobile application development framework offers the best performance for both

simple and complex mobile applications?

2. How does each framework handle cross-platform development, and how well do they

support iOS, Android, and other platforms (web/desktop)?

3. What is the development speed of each framework, and how easy is it for developers to

build, test, and deploy mobile applications?

4. How active and supportive is the developer community for each framework, and what

resources are available for developers?

5. Which framework is the most cost-effective in terms of development time, resource

allocation, and long-term maintenance?

2. Literature Review

When it comes to developing mobile applications there has been a shift from developing

standalone applications to developing complex frameworks that make developing for multiple

platforms possible. All development frameworks have unique features, opportunities as well as

drawbacks which shape the judgement of mobile developers and business entities. This literature

review aims at addressing the understanding of the main mobile application development

frameworks which include Native Development, React Native, Flutter, Xamarin, and Ionic. It

applies usability, compatibility, technology, community, and Generational suitability for various

mobile applications.

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW
Vol.02 No.04 (2024)

375

2.1 Native Mobile Application Development

Native mobile application development is the process of designing and developing applications

exclusively for only one platform, iOS or Android, using exclusively the programming language

of the platform. For iOS you have developers using Swift or Objective-C and for Android

developers using Java or Kotlin (Harrison & Bloom, 2021). Compared to other applications

Native applications can be compiled directly into machine code and thus get maximum

utilization of the available platform’s hardware and software resources. Therefore native apps are

well known for its high performance and stability along with rapid access to the device’s

functionalities like sensor, camera, GPS etc.

A study done by Brown et al. (2021) also found out that applications built specifically for a

particular operating system perform better than cross and hybrid applications since they use less

memory resource compared to the other two applications. If the application involves graphics-

intensive computations, animations, or real-time environment, native apps are the way to go,

according to Smith et al. (2022). For example, the greater processing power and low latency

required for games such as those which are accessed on mobile devices or augmented reality

applications lends well to the native approach of code optimization to the hardware as Peterson

(2020) notes.

But there is a downside to native app development. The first disadvantage is that it requires

development of different codebase as different platforms and this leads to a longer time and

expensive way to develop apps (Jones & Adams, 2021). This fragmentation is one of the biggest

issues for companies that want to engage users across these channels without simply cloning

energy (Harrison & Bloom, 2021).

2.2 Cross-Platform Mobile Application Development

However, to overcome those drawbacks, cross-platform mobile frameworks appeared in the

software environment. These frameworks enable the developers to write only one code, and it

can run on iOS, Android and, at times, web, and desktop platforms. Some of the top cross-

platform frameworks prevalent in the development sector are React Native, Flutter, Xamarin,

and Ionic; however, each of them has features of its kinds.

2.2.1 React Native

Facebook’s open-source cross-platform framework is React Native, which is currently regarded

as one of the leading ones. It enables creators to build programs with JavaScript and the React,

which is a JavaScript library owned by Facebook used for construction user interfaces. React

Native employs a bridge which translates the Javascript coding to the native code while using

native UI and is capable of accessing most of the platform's facilities (Harrison & Bloom, 2021).

From literature, Williams & Thompson (2023) posit that React Native delivers nearly native app

performance which is perfect for most apps that need to interface with device capabilities like the

camera, GPS, and sensors among others. That is why React Native’s hot-reloading feature,

which enables the viewer to see the changes the developer is making at the moment, also

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW
Vol.02 No.04 (2024)

376

increases speed. However, the React Native achieves high performance in most cases, but it fails

behind the native app performances particularly graphic-centred and computational complex

one’s (Smith et al., 2022). Therefore, the problem can decrease performance not only in

applications with instances of complex UI elements, such as buttons and list views, but also in

the case of high animation requirements or intensive background processing.

Additionally, the community of users working with React Native is large and there is a lot of

resources, librarie and third-party tools which increase the level of appeal (Jones & Adams,

2021). But, there are issues when it comes to writing codes that are specific to each platform for

features such as camera and some forms of testing can be difficult because of the layer that

isolates the JavaScript UI with native elements (Brown et al., 2022).

2.2.2 Flutter

Flutter is developed by google and is another budding star in cross-platform mobile

development. For instance, while building applications with Realm, React Native was used based

on JavaScript while Flutter is built using Dart – a language created by Google. Flutter offers

great flexibility in UI construction by offering an impressive range of widgets that can be

personalized to ensure that the user interfaces of the final products are homogenous irrespective

of the employed platform (Williams & Thompson, 2023).

Flutter’s architecture compiles the same code directly to native ARM code and this helps them to

deliver exceptional performance. According to Smith et al. (2022), it was discovered that Flutter

performs almost the same as native apps, especially in terms of the UI. Also, hot-reload feature

allows continually recompiling and updating the app in real-time in the mobile device without

the need for recompiling the entire application (Jones & Adams, 2021).

But one of the issues is that Flutter is relatively younger in terms of the ecosystem and the

community compared to such a fellow as React Native but gains momentum extremely fast

(Brown et al., 2022). Furthermore, Dart has less engagement than JavaScript, which indicates

that developers have to invest more time in it to study it, for example (Williams & Thompson,

2023). However, Flutter has been considered as a reliable platform for developing high-

performance cross-platform applications particularly by new generation startups and businesses

that aim at targeting both iOS and Android users effortlessly (Jones & Adams, 2021).

2.2.3 Xamarin

Another giant in the cross-platform development field is Xamarin that belongs to Microsoft.

Xamarin proved that possibility to write apps by C# language and use most part of code for both

platforms. Xamarin employs Mono runtime that assists in compiling the C# code into codes

specific to the underlying platform below spinner; Xamarin compiles your code into native apps

(Brown et al., 2022).

Xamarin, therefore, has great compatibility with Microsoft services, particularly Visual Studio

and Azure (Brown et al., 2022). Using Xamarin, one can reuse most of the code even across

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW
Vol.02 No.04 (2024)

377

different platforms, and they offer almost full access to the platform's API, which means that

creating apps that will utilize the full potential of all the platforms is possible with Xamarin,

while using a single codebase. However, Xamarin’s UI components program is not as supple and

adjustable as those of React Native or Flutter which may impose restraints on the design

solutions (Peterson, 2020). Basically, Xamarin performs well, but when complex UI elements or

animations are applied, then it performs poorly.

However Xamarin, is somehow limited in community size and support but it is backed up by

Microsoft, with very sturdy documentation. The main weakness of Xamarin comprises larger file

sizes of apps developed with its help and the need for deeper expertise in C# language usage

(Jones & Adams, 2021).

2.2.4 Ionic

Ionic is a framework of its own kind where developers use HTML, CSS alongside JavaScript to

build mobile applications. In contrast to what React Native and Flutter do and offer, where they

operate with native components Android or iOS, Ionic applications work in WebView, which

means that it would be a web application in a Native Shell. This approach enables Ionic to work

perfectly on any platform (iOS, Android, and Web) with the same code (Miller, 2020).

Another advantage of Ionic is regarded as its ability to help develop the application quickly. It is

as a result of its basis on web-related technologies; developers who already have web

development experience will be able to easily transform their experience to the development of

mobile applications. Ionic provides lots of UI elements and functions as plugins for using the

native feature of a device (Harrison & Bloom, 2021). However, due to the fact that Ionic apps are

actually executed in web view they can have a problem with performance, especially in cases

when application requires high refresh rate or contains a big amount of data (Miller, 2020). Ionic

is also cheap and fast for simpler apps that do not just involve lots of graphics or animations.

The first limitation is the usage of WebView, which results in worse performance compared to

truly native applications or similar to other hybrid approach software like React Native or

Flutter. This performance degradation becomes even more visible in those cases when the

applications in question heavily depend on graphics-related optimizations, or require significant

amounts of hardware resources (Jones & Adams, 2021).

2.3 Hybrid and Progressive Web Apps (PWA)

Other frameworks that have been used in the development process of mobile apps are as follows:

Progressive Web Apps (PWA) as a solution for building mobile applications. PWAs are web

applications designed to enable use of device features and installation, while providing offline

capabilities, push notifications and more (Williams & Thompson, 2023). Although they are

highly suitable in scenarios where businesses like to minimize the overall cost and time to

market, they are not rich in platform dependent attributes and performance.

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW
Vol.02 No.04 (2024)

378

Miller’s (2020) research shows that although PWAs are suitable for specific use cases,

particularly content delivery and broader utility, they are not nearly as performant as native

applications or the high-end cross-application such as Flutter.

2.4 Comparative Insights

In comparison with native methods, studies show that although native applications remain a

standard for performance, hybrid solutions such as React Native and Flutter are extremely close

to meeting the bar with added benefit of development time efficiencies in most cases (Harrison

& Bloom, 2021). Both React Native and Flutter perform exceptionally well in the cross-platform

aspect in development, so that a company can extend its reach to a target market without

essentially duplicating its work. But for highly specialized applications where performance is

essential, such as in gaming or an augmented reality application, app development using native

tools remains the ultimate benchmark (Smith et al., 2022).

Ionic is beneficial for such applications or small undertakings that do not require many native-

like features since it offers a quick way to create applications, particularly for businesses with

fewer resources and less time at their disposal (Miller, 2020).

2.5 Conclusion

Thus, mobile app development frameworks differ greatly in terms of performance, platform

independence, time-to-market, and support. This method provides the best result due to

completely fitting a program to the intended uses but it consumes more time and needs more

resources. React Native and Flutter both are excellent candidates representing the infrastructure

of cross-platform development with great performance, fast development time, and extensive

community support. Xamarin is great for C# developers who are part of the Microsoft

ecosystem, but it has certain inflexibilities when it comes to UI. Ionic is a beautiful app for

building MVPs quickly if you have a simple application but has poor performance. All the

frameworks are used in their own right based on the project needs, and some of the factors that

make one to pick a framework may include performance demands, developer tools and platform

objectives.

3. Methodology

This study used a comparative analysis approach to assess the effectiveness, ease of use and

efficiency of various mobile application development frameworks. The key goals are to evaluate

the five most popular frameworks: Native Development, React Native, Flutter, Xamarin, and

Ionic, compared to a set of parameters that include performance, platform compatibility, the

speed of developing applications, community support, and cost-efficiency. The methodology

consists of multiple phases: information structuring related to the choice of framework, design of

experiments, sample acquisition, and data analysis.

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW
Vol.02 No.04 (2024)

379

Framework Selection

The first activity of the methodology involved the determination of the leading Mobile

Application Development Frameworks that are commonly used and have substantial academic

and Real-world implementations. Based on the literature review, the following frameworks were

selected for comparison: Native for iPhone and Android, React, Natives, Reuters, Flutter,

Xamarin, ionic and Xamarin. These frameworks were specified for adoption because they are the

most popular ones in the industrial applications, and each targeted a specific aspect of

development.

Experiment Design

In the select experiment design phase, we identified standards that would help to compare the

frameworks properly. The aforementioned selection criteria involves one’s performance, ability

to develop at a fast rate, the platform on which it operates, support from the community, and its

cost. Benchmarking was done by measuring the interaction of apps developed with the various

frameworks and their resource usage. To evaluate the speed of development, we calculated the

time needed to develop a number of typical features for mobile applications including

authentication, data storage and integration with the features of the native platform such as a

camera or GPS.

Cross-platform support was gauged by assessing how well supported each framework is in

allowing the development of both iOS and Android. Concerning community support, the study

focused on the documentation, libraries, third-party plugin, and the activity on the developer

forum or GitHub in case the development platform of the language. Lastly, we assessed the cost

sensitivity of each framework by factors like time needed, available development tools, and,

most importantly, the cost of maintaining the frameworks in the long-run.

Data Collection

Data collection mechanism was both quantitative and qualitative. For the quantitative

component, the researcher developed a set of mobile applications utilizing each of the

frameworks. The applications were intended to carry out what may be termed as basic activities

including the execution of dynamic contents, managing inputs from the user, interacting with the

hardware of the device including the camera and GPS, and managing background operations.

Several factors such as boot time of the application, frame rates, CPU and memory utilization,

battery drain were used to evaluate the performance of each application. All these metrics were

collected with the help of profiling tools and application software including Xcode instruments

for iOS platform, Android studio profiler for Android platform, debugging tools for React

Native, Flutter, Xamarin, and Ionic.

For development speed, the researcher timed how long it took to accomplish various stages of

creating the app such as setting up the framework, building major functionalities of the

application, fixing bugs and problems, and releasing the application. These times were then

compared across all the frameworks to determine which of them delivered the most

effectiveness. Interoperability on different platforms was checked, when the similar application

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW
Vol.02 No.04 (2024)

380

was deployed on both iOS or Android and comparing platform issues during deployment such

as, UI disparities and API integration problems.

For the purpose of this study, community support was gauged using a developer forum poll,

documentation and other resourcesLiterature review. The researcher also looked at other outside

libraries and plugins likely to simplify most app operations. The activity in the number of total

and active contributors, the update frequency of the repositories, and overall traffic were

considered from GitHub repositories related to each framework.

The efficiency was determined by the development and maintenance expense, level of skills,

training, time needed, and scaling over the long term. Based on this analysis and available

literature, these estimates were made based on standardized surveys across the industry and case

studies of organizations that applied these frameworks.

Data Analysis

Following the accumulation of data, an extensive examination was performed. In the

performance evaluation, quantitative data like the launch time of the application, memory

consumption, CPU utilisation and battery consumption were used for comparison among the

various frameworks. To make it possible to compare the values meaningfully across devices of

different hardware capability, a performance index was constructed by normalizing the values.

The development speed data was calculated by averaging the time taken to develop each phase

of the app development process under each framework. This made it possible to tell which

frameworks enabled the creation of applications with short time to complete the development

cycle and which one offered several tools that were friendly to developers.

As for platform compatibility assessment, the researcher also investigated how each of the

frameworks performs in terms of ease of integration with both iOS and Android. Factors like

platform dependent bugs, broken UI interface and challenges arising from the integration of

platform dependent features were considered. The assessment of the community support was

informed by the survey and a content analysis of the sources available on the internet. To

compare the activity of each framework’s ecosystem, the researcher determined how easily

developers can find help resources, third-party tools, and libraries.

Lastly, the cost-effectiveness analysis based on the data, collected from the industry case studies

and interviews, to evaluate the overall costs incurred during development for each of the

frameworks. This encompassed the time spent in training and practising within the framework;

employing extra staff when required as well as the overall costs of maintaining the framework in

the future. The results were used to come up with a last recommendation which took into account

the final performance, speed, compatible platforms and the associated costs.

Ethical Considerations

An attempt was made to take a thorough consideration over the ethical issues during the course

of the present study. All the interviews conducted with developers of the C systems in the

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW
Vol.02 No.04 (2024)

381

community support evaluation were done voluntarily with all the participants informed about the

research aim and their rights. Also, authors paid special attention with regard to the data

procured from the test of the performance of the app, and the interviews conducted with

developers, assuring that all data was safely anonymized.

Limitations

However, as with any study, there are limitations to this paper – which is to come up with a

comparison of the two. It is also important to note that while consistent patterns of performance

metrics are observed, the results may differ slightly from one device’s model or version of the

operating system. Furthermore, the selection of the various aspects of an app, including features

and design patterns, could affect the time and effort necessary for developing the applications

and may not hold across all kinds of app.

4. Results

The experimental data collected during the testing of six mobile application development

frameworks—Native iOS, Native Android, React Native, Flutter, Xamarin, and Ionic—

provide a comparative view of their performance metrics, development time, and battery

consumption. The performance metrics used in this analysis are App Launch Time, Memory

Usage, CPU Usage, Battery Consumption, and Development Time. A detailed summary of

the results is presented in the table below:

Framework App

Launch

Time (s)

Memory

Usage

(MB)

CPU

Usage

(%)

Battery

Consumption

(%)

Development

Time (hrs)

Cross-Platform

Compatibility

Native iOS 1.2 120 8 1.5 120 Yes

Native

Android

1.3 130 9 1.6 115 Yes

React

Native

2.5 180 15 2.8 90 Yes

Flutter 2.0 170 12 2.4 95 Yes

Xamarin 2.2 160 14 2.6 100 Yes

Ionic 3.5 210 22 4.0 80 Yes

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW
Vol.02 No.04 (2024)

382

Figure 1: App Launch Time (Seconds) Comparison

App Launch Time: Native iOS and Native Android have the shortest mean app startup times

ranging from 1.2 to 1.3 seconds; this is because the two are designed for specific platforms. This

suggests that native apps load very fast in terms of the first time loading experience. As for

launch times, there is a relatively slight difference: React Native took 2.5 sec, which is the

longest time compared to others. This decline in performance is because of the interpretation

process of JavaScript throughout the React Native, and extra layers of мовчалище in Xamarin

and Flutter. Ionic as a hybrid platform has the longest launch time of 3.5 seconds, here we can

literally see how WebView-based rendering hinders an app at the time of cold start.

Figure 2: Memory Usage (MB) Comparison

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW
Vol.02 No.04 (2024)

383

Memory Usage: Native apps are usually considered to be better in terms of taking up less

memory space. As in the case of memory consumption the most efficient applications are Native

iOS (120 MB) and Native Android (130 MB). React Native is 180 MB in size and Flutter is 170

MB in size, the extra byte is due to the usage of extra libraries, JavaScript bridges for handling

JS code along with some of the UI rendering particles which many use more memory. After

analyzing their files Xamarin (160 MB) is claimed to consume more memory than native

solutions but still be less than in React Native and Flutter. Most memory is used by Ionic at 210

MB which shows that using WebView and web technologies within a native app increases

overhead.

Figure 3: CPU Usage (%) Comparison

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW
Vol.02 No.04 (2024)

384

CPU Usage: Native iOS and Native Android contribute the least to CPU overall usage (8% and

9% respectively) since the native applications are most efficient on their particular operating

systems and in the hardware devices. React Native consumes a higher CPU usage of 15%,

followed by Flutter (12%) and Xamarin (14%) notably due to extra computational capacity

demanding on Javascript engine in React Native and added frameworks and widgets in Flutter

and Xamarin. Ionic again proves to be the slowest with 22% CPU usage and this is due to the

fact that Ionic relies on the WebView to run a JavaScript code within the application, this will

definitely drain a lot of CPU than when using native components.

Figure 4: Development Time (Hours) Comparison

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW
Vol.02 No.04 (2024)

385

Battery Consumption: Battery consumption is another important aspect affecting mobile

applications performance, or specifically, user experience. Among all the frameworks, Native

iOS (1.5%) and Native Android (1.6%) are the most energy conserving, requiring almost

negligible battery power. Surprisingly, Flutter (2.4%) consumes slightly more battery power than

Xamarin (2.6%) this may be because of the extra components and APIs that Flutter employs.

React Native (2.8%) is shown to consume more battery, which is due to the additional processing

capable of taking place in order to shuttle information between the JavaScript environment and

the native APIs. Ionic consumes the most battery at 4.0 % as observed due to the ineffectiveness

of the idea of using WebView.

Development Time: Ionic is the speediest of all the development frameworks, as it takes only

eighty hours in the development of this simple application with the fundamental features. This is

so because REACT depends on WEB technologies such as hypertext markup language,

cascading style sheets, and JavaScript for speedy development. React Native comes close with

90 hours, doubtlessly due to sharing JavaScript with the web version and the ability to reuse

components, but requiring more time for testing and optimizing for multiple platforms. Flutter is

said to take 95 hours, just a bit longer than React Native because it employs Dart, a language

with a somewhat higher difficulty for coding beginners as compared to React Native. Umbraco

takes 50 hours because it is built on ASP.NET, which may need little setting up and

understanding has to be made in regard to Microsoft’s ecosystem while Xamarin takes additional

100 hours due to the same reason. However, Native iOS (120 hours) and Native Android (115

hours) take additional time for development, because developers are working with platform

specific code which can cause compatibility and performance issues.

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW
Vol.02 No.04 (2024)

386

6. Discussion

A comparison of the selected six mobile application development frameworks; Native iOS and

Native Android, React Native, Flutter, Xamarin, and Ionic in this study shows different trade-off

scenarios in performance, memory usage, CPU and battery consumption, and development time.

This section presents the findings in detail and reviews literature on the subject It also offers

guidelines for developers and organizations choosing a framework for mobile application

development.

6.1 Performance Analysis

The launch time of the app seemed to be the biggest gap between the two native and cross-

platform frameworks. We also see here that the native frameworks indicate the quickest launch

time with iOS and Android both averaging between 1.2 and 1.3 seconds. This concurs with

previous works where native applications were deemed to be more reactive owing to their close

interaction with device hardware and operating system functionalities (Smith et al., 2022). For

instance, the studies by Harrison and Bloom (2021) also revealed that uncluttered native iOS and

Android apps generally have optimal start-up time compared to cross-platform frameworks such

as React Native and Flutter.

However, it was observed that the launch time of the React Native, Flutter and Xamarin based

apps were comparatively slower, with React Native taking the longest at 2.5 s. This can be

blamed to the fact of the overhead incurred to link JavaScript to native code (Jones & Adams,

2021). Originally developed by Google and using the Dart language and its own rendering

engine for UIs, Flutter also boasts a rather long launch time (2.0s). The results are aligned with

the findings of other authors, including Williams and Thompson (2023), who have pointed out

that using SV frameworks like React Native and Flutter, some performance is lost in exchange

for speed and cross-platform developments.

Ionic, which heavily depends on WebView for content rendering, was the slowest in terms of

launch time, taking 3.5 seconds. The WebView through which almost all processing happens is a

browser installed right inside the app which greatly increases overhead at the start up and during

operation. Studying Ionic, Miller (2020) noted that performance is an issue where hybrid

frameworks go; this is because they tend to run slow where dynamic applications need faster and

enriched interactions.

6.2 Memory Usage and CPU Consumption

The memory usage results indicated in Figure 2 confirm that native frameworks consume less

memory compared to cross-platform solutions. As expected, the most memory efficient mode

was Native iOS (120 MB) and Native Android (130 MB) because they use the services of the

operating system directly without additional abstractions. This finding supports the result of the

study by Smith et al. (2022) that identified native apps as having improved memory management

and performance.

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW
Vol.02 No.04 (2024)

387

Cross-platform frameworks like React Native, Flutter, Xamarin, and Ionic provide a larger

memory consumption where IONIC takes the highest memory rate (210MB). The optimization

of memory usage in the above frameworks is because of the extra load from running JavaScript,

handling a virtual machine or rendering engine in the case of Flutter, and operation across

multiple platforms within the same codebase. This is particularly true given that cross-platform

frameworks are often noted to demand more resources to accommodate the differences between

platform-specific application programming interface and common code.

As for CPU usage (see Figure 3), Native iOS and Native Android frameworks use 8-9% CPU

only which is significantly lower that other implementations. The cross-platform frameworks

consume more CPU time than hybrid frameworks especially Ionic with 22% as compared to the

WebView that heavily relies on JavaScript to construct the user interface. Previous research also

notes that, for example, hybrid frameworks like Ionic remain characteristically heavier on CPU

and are slower in part because they require a JS engine to run application logic (Miller, 2020).

These results support the studies of Jones and Adams (2021) implying that even pure JavaScript

frameworks, such as React Native , have a higher CPU load when it comes to native messaging

or heavy calculations.

6.3 Battery Consumption

Battery consumption is the biggest deal when it comes to user satisfaction, more so for mobile

applications that are guaranteed to be running in the background or requiring that they solve

complex computational problems. Of the different tones, native IOS applications used 1.5% of

the battery while native android consumed 1.6% only proving that applications that have straight

access to the hardware consume less battery. When it comes to battery consumption React,

Native was slightly higher (2.8%) along with flutter (2.4%) and Xamarin (2.6%) for the same

reasons: an additional layer of abstraction and more processing power needed to run cross

platform applications.

Ionic once again uses the most battery (4.0 %), as the research by Brown and Clark (2022)

discovered. The analysis brought by Brown and Clark (2022) showed that these WebView-based

frameworks including Ionic are least efficient in power consumption, especially when the

framework needs constant refresh to the view layer or has execution of tight user interactions.

This result underlines the inefficiency of the hybrid forms of development where the same code

is being used on different platforms.

6.4 Development Time and Efficiency

The results of the development time are presented in Figure 4 and they indicate that Ionic

required the least amount of time, 80 hours for creating an app with basic functionalities.

Harrison and Bloom (2021) have acknowledged that frameworks like Ionic support that kind of

hybrid development since a developer can write code on a single platform once and compile it

for both iOS and Android. React Native and Flutter came second with 90 and 95 hours,

respectively. Both are able to utilise a large amount of the codebase, but take greater time due to

the need to test, debug, and ensure platform compatibility. These findings are consistent with

previous research including work by Jones and Adams (2021) which found that the use of

frameworks like React Native and Flutter make cross-platform development much quicker to

execute.

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW
Vol.02 No.04 (2024)

388

Xamarin took 100 hours, marginally more than RN and Flutter, because developers must learn

C# and the .NET framework. Native iOS and Native Android had the longest development times

of 120 and 115 hours respectively as earlier revealed by other studies. Developing in native

languages always takes more time because the code needs to be coded from the scratch for each

platform and additional time is spent on testing on the individual platforms, optimization of the

GUI and fixing bugs (Smith et al., 2022).

6.5 Cross-Platform Compatibility

It is noteworthy that all the frameworks discussed in this study are compatible with multiple

platforms (Table 1). However, the change in performance observed in terms of launch time,

memory usage and CPU gives evidence of a trade off between code reuse and performance.

According to Williams and Thompson (2023), the frameworks such as React Native, Flutter, and

Xamarin ensure the development of multi-platform applications with a single codebase and can

take relatively less time and money but should avoid for applications requiring optimum

functions and resources.

6.6 Comparative Analysis with Other Studies

As with other similar studies, the results of this study are also in agreement with the conclusions

drawn by other researchers. For example, Jones and Adams (2021) demonstrated that native

developed mobile applications act positively when it comes to speeding and memory

intensiveness, but not without drawing greater time and cost intensiveness. In a similar way,

Brown and Clark (2022) noted that native frameworks offered higher performance and reliability

but there were more benefits related to using cross-platform frameworks like React Native and

Google Flutter in terms of time and money efficiency. The findings of the current study are in

line with these observations and confirm that the key decision criterion when choosing the

framework for mobile applications’ development lies in trade-offs between performance and

speed of development.

Ionic, which was the fastest in the development phase, demonstrated lower figures in all the

subsequent criteria, including performance, memory, and battery intensity. This aligns with

Miller (2020) who opined that although hybrid frameworks are fast in development, they suffer

from poor performance. The findings bear some truth with the observation made by Williams

and Thompson (2023) in their assertion that the Ionic hybrid frameworks are suitable for

designing less complex applications where performance is not paramount.

6.7 Implications for Developers

When developers and businesses decide that they require a framework, the framework that is

right for both should be selected based on the project. Native development is useful for

organizations that have performance-critical applications that need to be optimized to the tiniest

detail while consuming the least system resources. However, this is disadvantageous since it will

require longer time and capital expenditure in the development of such products.

Hybrid development tools, for example, React Native and Flutter, thus combining the speed of

development and the performance of the applications. Highlander components are best used in

the applications which require to be launched in both iOS and Android but with less difference in

their speed and usage of a device. While Ionic is best for mock-up applications or generally

simple applications, the performance is not as important in them.

6.8 Conclusion

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW
Vol.02 No.04 (2024)

389

The objective here is to show a clear comparison of the advantages and disadvantages of various

mobile application development frameworks. When an application is developed with the native

development, it provides the best results and consumes fewer resources but it takes much more

time than other development methods. The third category is known as cross-platform

frameworks, which include React Native, Flutter, and Xamarin; they deliver reasonable

performance and shorter development time. Ionic is the most expressive framework in terms of

the apps development but in terms of functionality and resource usage it’s below par hence it is

based for less app complexities. Before deciding to use a specific framework, developers need to

ascertain the needs of their project including the need for speed, capability and maintainability in

the long run. Since this study considered perfectly balanced and small-scale problems, future

studies could deploy practical case studies and efficiency in production systems to consider

application impacts.

References

Brown, C., & Clark, J. (2022). Xamarin for Mobile Development: Pros and Cons. Microsoft Developer Insights,

16(4), 89-101.

Harrison, L., & Bloom, S. (2021). Native vs. Cross-Platform Mobile App Development: A Comparative Study.

Brown, C., & Clark, J. (2022). Xamarin for Mobile Development: Pros and Cons. Microsoft Developer Insights,

16(4), 89-101.

Harrison, L., & Bloom, S. (2021). Native vs. Cross-Platform Mobile App Development: A Comparative Study.

Journal of Mobile Application Engineering, 24(3), 157-172.

Jones, R., & Adams, P. (2021). Cross-Platform Development with React Native: A Comprehensive Review. Journal

of Mobile Development, 19(1), 45-67.

Miller, D. (2020). Hybrid App Development with Ionic: A Quick Guide. Web Development Journal, 21(1), 33-47.

Peterson, J. (2020). The Role of Native Mobile Apps in Performance-Critical Applications. Journal of App

Performance, 32(2), 101-114.

Smith, A., Johnson, L., & Green, M. (2022). Native Mobile App Development: A Performance and Usability

Comparison. Journal of Software Engineering, 45(2), 213-225.

Williams, B., & Thompson, S. (2023). The Rise of Flutter: A New Era in Cross-Platform Development. Software

Development Trends, 39(3), 102-115.

Brown, C., & Clark, J. (2022). Xamarin for Mobile Development: Pros and Cons. Microsoft Developer Insights,

16(4), 89-101.

Smith, A., Johnson, L., & Green, M. (2022). Native Mobile App Development: A Performance and Usability

Comparison. Journal of Software Engineering, 45(2), 213-225.

Williams, B., & Thompson, S. (2023). The Rise of Flutter: A New Era in Cross-Platform Development. Software

Development Trends, 39(3), 102-115.

Statista. (2023). Number of mobile apps available in leading app stores as of 2023. Statista. Available at:

https://www.statista.com/statistics/276759/number-of-apps-available-in-leading-app-stores/

