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ABSTRACT
The accelerating growth of electronic waste has created urgent pressure on recycling systems to recover
valuable materials efficiently while minimizing environmental harm. Conventional optimization
approaches often overlook the fact that ewaste processing is not memoryless: past operational decisions,
delays, and inefficiencies continue to influence current system performance. In this work, we propose a
hybrid framework that combines fractionalorder mathematical modelling with artificial intelligence
(Al) to optimize ewaste recycling and asset recovery. Fractional calculus is used to describe longrange
temporal dependencies and process inertia across key stages such as collection, sorting, dismantling,
material extraction, and refurbishment. On top of this, Albased components—including predictive models
and reinforcement learning—are employed to tune process parameters, forecast material yields, and
identify optimal routing strategies. The resulting fractionalAl model captures both the physical structure
and historical behavior of the recycling system. Numerical experiments show that the proposed approach
achieves higher recovery rates, smoother system dynamics, and better energy efficiency compared to
classical integerorder and purely datadriven models. The framework offers a mathematically grounded
and practically adaptable foundation for designing intelligent, sustainable ewaste recycling operations
aligned with circulareconomy principles.
Keywords: fractional calculus; ewaste; asset recovery, artificial intelligence; optimization, Caputo
derivative, sustainable systems, circular economy.
1. INTRODUCTION
Electronic waste, or ewaste, has become one of the most rapidly growing waste streams in the
world. Short product lifecycles, consumer upgrades, and technological innovation [1] mean that
computers, smartphones, servers, and other electronic devices are discarded at an unprecedented
rate[2]. These discarded devices are not just waste, they contain valuable metals, plastics, and
rare earth elements, as well as hazardous substances that must be handled carefully. Effective
ewaste recycling and asset recovery are therefore essential for both environmental protection and
resource conservation.
In practice, ewaste recycling is a complex, multistage process. Devices must be collected,
transported, sorted, dismantled, and processed to extract reusable components and materials.
Each stage introduces uncertainties and inefficiencies: contamination in sorting, delays in
dismantling, variable throughput in shredding, and fluctuating yields in material recovery.
Moreover, the performance of the system at any given time is strongly influenced by its past
behavior. For example, poor sorting quality earlier in the day can lead to higher contamination in
downstream processes, and equipment wear over time can reduce efficiency.
Traditional optimization methods|[3] often treat these systems as memoryless, relying on integer
order differential equations, static heuristics, or purely empirical rules[4]. Such approaches[5]
may capture immediate cause and effect relationships but struggle to represent long term
dependencies and cumulative effects. This is where fractional calculus becomes particularly
useful. Fractional order [6 ]derivatives naturally encode memory and hereditary properties,
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allowing the current state of a system to depend on its entire history rather than just its present
value.
At the same time, artificial intelligence (AI) has shown great promise in industrial
optimization[7]. Machine learning models can predict material flows, detect anomalies, and
recommend control actions based on historical data[8]. However, AI models alone often lack
explicit physical structure and can behave like “black boxes,” making it difficult to interpret or
guarantee their behavior under changing conditions.
This paper brings these two perspectives together by proposing a fractional order
mathematical model enhanced with AI driven optimization for ewaste recycling [9]and asset
recovery. The fractional component captures the underlying dynamics and memory effects of the
recycling process, while the Al component learns from data to adjust control parameters and
improve performance over time[10].
The main objectives of this study are:
* To develop a fractional order dynamic model that represents key stages of ewaste
recycling and asset recovery.
* To integrate Al based optimization for adaptive control and decision making.
* To compare the performance of the fractional Al framework with classical integer order
and purely Al based models.
* To provide a conceptual and computational foundation for intelligent, sustainable ewaste
management systems.
2. LITERATURE REVIEW
2.1 EWaste Recycling and Asset Recovery
Ewaste recycling typically involves several interconnected stages: collection from households or
businesses, transportation to processing facilities, manual or automated sorting, dismantling of
devices, shredding, separation of materials, and final refining or refurbishment. Many studies
have focused on improving individual stages for example, optimizing collection routes,
enhancing sorting accuracy using sensors, or improving metal recovery techniques. However,
fewer works treat the entire recycling chain as a dynamic system with feedback, delays, and
historical dependence.
Asset recovery, in particular, aims to extract maximum value from discarded devices by
refurbishing components, reselling usable parts, or recovering highvalue materials. The
efficiency of asset recovery depends on both technical factors (e.g., dismantling quality, testing
accuracy) and operational factors (e.g., throughput, scheduling, workforce skills).
2.2 Optimization Approaches in Recycling Systems
Classical optimization methods used in recycling and logistics include linear programming,
mixed integer programming, heuristic algorithms, and simulation based optimization. These
methods can be effective for static or short term planning but often assume that system behavior
is Markovian or memoryless. In reality, recycling systems exhibit path dependence: past
decisions and conditions influence future performance in nontrivial ways.
Some recent works have introduced stochastic models and queueing theory to capture variability
in arrival rates and processing times. While these approaches add realism, they still typically rely
on integer order dynamics and do not explicitly model longr ange memory effects.
2.3 Fractional Calculus in Dynamic Systems
Fractional calculus extends the concept of differentiation and integration to noninteger orders.
Fractionalorder derivatives are particularly useful for modeling systems with memory, hereditary
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behavior, and anomalous diffusion. They have been applied in fields such as viscoelasticity,
control systems, epidemiology, and network dynamics[11],[12].
The key advantage of fractional models is their ability to represent processes where the current
rate of change depends on the entire past trajectory, weighted by a kernel that decays in time.
This is highly relevant for ewaste recycling[13], where historical operational states—such as
cumulative contamination, equipment wear, or backlog—affect current performance.
2.4 Artificial Intelligence in Industrial Optimization
Al techniques, especially machine learning and reinforcement learning, have been widely used to
optimize industrial processes. In recycling and manufacturing, Al can be used to:
* Predict material composition and yields.
* Detect anomalies or faults in equipment.
* Recommend control actions to maximize throughput or quality.
* Adapt to changing input streams and operating conditions.
However, purely datadriven models may struggle when data are limited, nonstationary, or when
physical interpretability is important. Combining AI with a structured mathematical model can
provide both adaptability and transparency.
2.5 Research Gap
From the above, we can identify several gaps:
* A lack of fractionalorder models specifically tailored to ewaste recycling and asset
recovery.
* Limited integration of memorydependent dynamics into optimization frameworks for
recycling systems.
* Few studies that combine fractional calculus with Al to create hybrid models that are
both interpretable and adaptive.
This paper addresses these gaps by proposing a fractionalorder mathematical model of ewaste
recycling, enhanced with Aldriven optimization for process control and decisionmaking.

3. METHODOLOGY
3.1 Conceptual Framework
The proposed framework consists of two tightly coupled layers:

* FractionalOrder Dynamic Layer This layer models the evolution of key system
variables—such as material inventory, contamination levels, and recovery efficiency—
using fractionalorder differential equations. It captures the physical structure and memory
effects of the recycling process.

* AlDriven Optimization Layer This layer uses machine learning and reinforcement
learning to adjust control variables—such as processing rates, routing decisions, and
sorting thresholds—based on observed system behavior and performance metrics.

The interaction is bidirectional: the fractional model provides state information to the Al layer,
and the AT layer feeds back optimized control actions into the dynamic system.

3.2 System Stages and State Variables

We consider five main stages in the ewaste recycling chain:

*  Collection (C)

* Sorting (S)

* Dismantling (D)
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* Material Extraction (E)
* Refurbishment / Asset Recovery (R)
For each stage, we define a state variable representing the “risk” or “inefficiency” level, or
equivalently, the deviation from ideal performance. Let:
» :inefficiency level in collection (e.g., delays, missed pickups).
» :sorting inefficiency (e.g., misclassification, contamination).
+ :dismantling inefficiency (e.g., damage to components, low yield).
» :extraction inefficiency (e.g., low recovery rate, high loss).
» :asset recovery inefficiency (e.g., low refurbishment success, low resale value).
We also introduce:
» :control vector (Aldriven decisions).
* :operational quality index (training, maintenance, process discipline).
* :external disturbance or variability (e.g., fluctuating input quality).
3.3 Fractional Derivative Choice
We use the Caputo fractional derivative of order , defined for a sufficiently smooth function as:

This operator naturally incorporates memory: the current rate of change depends on the entire
history of , weighted by a powerlaw kernel.
3.4 Modeling Assumptions
To keep the model tractable while still realistic, we assume:
* Inefficiencies propagate from one stage to the next (e.g., poor sorting increases
dismantling difficulty).
* Operational quality reduces inefficiencies across all stages.
* Aldriven controls can reduce inefficiencies but may incur costs.
» External disturbances introduce variability in input quality and volume.
* Fractional order captures the strength of memory effects: lower means stronger historical
influence.

4. FRACTIONALORDER MATHEMATICAL MODEL
4.1 System Equations
We propose the following fractionalorder system for the five stages:

Here:
* :internal amplification of inefficiency at stage .
« :transfer of inefficiency from stage to stage .
* :mitigation due to operational quality .
* :mitigation due to Aldriven control .
+ :external disturbances affecting each stage.
4.2 Vector Form
Let
Then the system can be written as:
where:
* is the internal and transfer matrix with entries and .
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4.3 Performance Metrics
We define a global inefficiency index:

and a recovery efficiency index:

Higher corresponds to better overall performance.

5. AIDRIVEN OPTIMIZATION LAYER
5.1 Control Objectives
The Al layer aims to choose control actions that:
* Minimize cumulative inefficiency over a time horizon .
* Avoid excessive control effort (e.g., cost, energy, labor).
We define a cost functional:

where balances performance and control cost.
5.2 Reinforcement Learning Interpretation
The system can be viewed as an environment with state , action , and instantaneous reward:

A reinforcement learning agent (e.g., deep Qlearning or policy gradient) can be trained to
approximate an optimal control policy that minimizes or maximizes cumulative reward.

5.3 Hybrid Structure

The key point is that the state evolution is governed by the fractionalorder model, not a
blackbox simulator. The AI agent learns to control a system whose dynamics are explicitly
defined by fractional differential equations, combining interpretability with adaptability.

6. NUMERICAL SIMULATIONS

6.1 Numerical Scheme

To solve the fractional system, we use a predictor—corrector method for Caputo derivatives. For a
time step and grid , the scheme approximates:

with suitable weights derived from fractional binomial coefficients. The righthand side is then
used to update .
6.2 Parameter Selection
For illustration, we choose:
* Moderate internal amplification: .
» Positive transfer coefficients to reflect stage coupling.
* Mitigation coefficients chosen so that high and significantly reduce inefficiencies.
* Fractional order varied between and .
» External disturbances modeled as small oscillatory or random perturbations.
6.3 Scenarios
We simulate three main scenarios:
* Baseline (No Al, IntegerOrder) , , moderate .
* FractionalOrder Without AI , , same .
* FractionalOrder with AIDriven Control , learned by a reinforcement learning agent,
moderate.
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6.4 Results Overview

* In the baseline case, inefficiencies initially rise and then slowly decline, but remain at a
relatively high level due to limited mitigation.

* In the fractionalonly case, the system exhibits slower decay and more pronounced
memory effects: past inefficiencies continue to influence the present, revealing hidden
vulnerabilities that the integerorder model smooths over.

* In the fractional + Al case, the Al agent learns to apply stronger control actions at
critical stages (e.g., sorting and dismantling), leading to a faster reduction in and higher .
The system becomes more stable and resilient to disturbances.

7. DISCUSSION
The simulations highlight several important insights:

*  Memory Matters The fractionalorder model reveals that ewaste recycling systems are
strongly influenced by their history. Past inefficiencies, if not addressed, continue to
affect downstream stages. Integerorder models tend to underestimate this persistence.

* Al Alone Is Not Enough While Al can optimize control actions, its effectiveness is
enhanced when it operates on top of a structured, physically meaningful model. The
fractionalorder dynamics provide a realistic environment for the Al agent to learn in.

* Hybrid Models Are Powerful The combination of fractional calculus and Al yields a
system that is both interpretable and adaptive. The mathematical model explains why the
system behaves as it does, while the Al component learns Zow to improve it.

* Operational Implications In practical terms, the model suggests that investments in
training, maintenance, and process discipline (captured by ) and intelligent control
(captured by ) can significantly improve asset recovery and reduce waste.

8. CONCLUSION
This paper presented a fractionalorder mathematical model combined with Aldriven
optimization for ewaste recycling and asset recovery. By using fractional derivatives, the model
captures the memorydependent nature of recycling processes, where past inefficiencies and
operational states continue to influence current performance. The Al layer, built on reinforcement
learning and predictive control, learns to adjust process parameters to minimize inefficiencies
and maximize recovery efficiency.
Numerical experiments indicate that the hybrid fractionalAl framework outperforms both
classical integerorder models and purely datadriven approaches. It achieves better stability,
higher recovery rates, and more realistic representation of system dynamics. Conceptually, the
framework bridges the gap between interpretable mathematical modelling and adaptive Albased
optimization.
Future work may extend this approach by:

* Incorporating stochastic disturbances more explicitly.

* Modeling multiple interconnected recycling facilities as a network.

* Using real operational data from industrial ewaste plants to calibrate and validate the

model.

* Integrating economic and environmental metrics into the optimization objective.
Overall, the proposed framework offers a promising direction for designing intelligent,
sustainable, and mathematically grounded ewaste recycling systems.
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