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ABSTRACT 

The accelerating growth of electronic waste has created urgent pressure on recycling systems to recover 
valuable materials efficiently while minimizing environmental harm. Conventional optimization 
approaches often overlook the fact that ewaste processing is not memoryless: past operational decisions, 
delays, and inefficiencies continue to influence current system performance. In this work, we propose a 
hybrid framework that combines fractionalorder mathematical modelling with artificial intelligence 

(AI) to optimize ewaste recycling and asset recovery. Fractional calculus is used to describe longrange 
temporal dependencies and process inertia across key stages such as collection, sorting, dismantling, 
material extraction, and refurbishment. On top of this, AIbased components—including predictive models 
and reinforcement learning—are employed to tune process parameters, forecast material yields, and 
identify optimal routing strategies. The resulting fractionalAI model captures both the physical structure 
and historical behavior of the recycling system. Numerical experiments show that the proposed approach 
achieves higher recovery rates, smoother system dynamics, and better energy efficiency compared to 
classical integerorder and purely datadriven models. The framework offers a mathematically grounded 
and practically adaptable foundation for designing intelligent, sustainable ewaste recycling operations 
aligned with circulareconomy principles. 
Keywords: fractional calculus; ewaste; asset recovery; artificial intelligence; optimization; Caputo 
derivative; sustainable systems; circular economy. 

1. INTRODUCTION 

Electronic waste, or ewaste, has become one of the most rapidly growing waste streams in the 

world. Short product lifecycles, consumer upgrades, and technological innovation [1] mean that 
computers, smartphones, servers, and other electronic devices are discarded at an unprecedented 
rate[2]. These discarded devices are not just waste, they contain valuable metals, plastics, and 

rare earth elements, as well as hazardous substances that must be handled carefully. Effective 
ewaste recycling and asset recovery are therefore essential for both environmental protection and 

resource conservation. 
In practice, ewaste recycling is a complex, multistage process. Devices must be collected, 
transported, sorted, dismantled, and processed to extract reusable components and materials. 

Each stage introduces uncertainties and inefficiencies: contamination in sorting, delays in 
dismantling, variable throughput in shredding, and fluctuating yields in material recovery. 

Moreover, the performance of the system at any given time is strongly influenced by its past 
behavior. For example, poor sorting quality earlier in the day can lead to higher contamination in 
downstream processes, and equipment wear over time can reduce efficiency. 

Traditional optimization methods[3] often treat these systems as memoryless, relying on integer 
order differential equations, static heuristics, or purely empirical rules[4]. Such approaches[5] 

may capture immediate cause and effect relationships but struggle to represent long term 
dependencies and cumulative effects. This is where fractional calculus becomes particularly 
useful. Fractional order [6 ]derivatives naturally encode memory and hereditary properties, 
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allowing the current state of a system to depend on its entire history rather than just its present 
value. 
At the same time, artificial intelligence (AI) has shown great promise in industrial 

optimization[7]. Machine learning models can predict material flows, detect anomalies, and 
recommend control actions based on historical data[8]. However, AI models alone often lack 

explicit physical structure and can behave like “black boxes,” making it difficult to interpret or 
guarantee their behavior under changing conditions. 
This paper brings these two perspectives together by proposing a fractional order 

mathematical model enhanced with AI driven optimization for ewaste recycling [9]and asset 
recovery. The fractional component captures the underlying dynamics and memory effects of the 

recycling process, while the AI component learns from data to adjust control parameters and 
improve performance over time[10]. 
The main objectives of this study are: 

• To develop a fractional order dynamic model that represents key stages of ewaste 
recycling and asset recovery. 

• To integrate AI based optimization for adaptive control and decision making. 
• To compare the performance of the fractional AI framework with classical integer order 

and purely AI based models. 

• To provide a conceptual and computational foundation for intelligent, sustainable ewaste 
management systems. 

2. LITERATURE REVIEW 

2.1 EWaste Recycling and Asset Recovery 

Ewaste recycling typically involves several interconnected stages: collection from households or 

businesses, transportation to processing facilities, manual or automated sorting, dismantling of 
devices, shredding, separation of materials, and final refining or refurbishment. Many studies 

have focused on improving individual stages for example, optimizing collection routes, 
enhancing sorting accuracy using sensors, or improving metal recovery techniques. However, 
fewer works treat the entire recycling chain as a dynamic system with feedback, delays, and 

historical dependence. 
Asset recovery, in particular, aims to extract maximum value from discarded devices by 
refurbishing components, reselling usable parts, or recovering highvalue materials. The 

efficiency of asset recovery depends on both technical factors (e.g., dismantling quality, testing 
accuracy) and operational factors (e.g., throughput, scheduling, workforce skills). 

2.2 Optimization Approaches in Recycling Systems 

Classical optimization methods used in recycling and logistics include linear programming, 
mixed integer programming, heuristic algorithms, and simulation based optimization. These 

methods can be effective for static or short term planning but often assume that system behavior 
is Markovian or memoryless. In reality, recycling systems exhibit path dependence: past 

decisions and conditions influence future performance in nontrivial ways. 
Some recent works have introduced stochastic models and queueing theory to capture variability 
in arrival rates and processing times. While these approaches add realism, they still typically rely 

on integer order dynamics and do not explicitly model longr ange memory effects. 
2.3 Fractional Calculus in Dynamic Systems 

Fractional calculus extends the concept of differentiation and integration to noninteger orders. 
Fractionalorder derivatives are particularly useful for modeling systems with memory, hereditary 
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behavior, and anomalous diffusion. They have been applied in fields such as viscoelasticity, 
control systems, epidemiology, and network dynamics[11],[12]. 
The key advantage of fractional models is their ability to represent processes where the current 

rate of change depends on the entire past trajectory, weighted by a kernel that decays in time. 
This is highly relevant for ewaste recycling[13], where historical operational states—such as 

cumulative contamination, equipment wear, or backlog—affect current performance. 
2.4 Artificial Intelligence in Industrial Optimization 

AI techniques, especially machine learning and reinforcement learning, have been widely used to 

optimize industrial processes. In recycling and manufacturing, AI can be used to: 
• Predict material composition and yields. 

• Detect anomalies or faults in equipment. 
• Recommend control actions to maximize throughput or quality. 
• Adapt to changing input streams and operating conditions. 

However, purely datadriven models may struggle when data are limited, nonstationary, or when 
physical interpretability is important. Combining AI with a structured mathematical model can 

provide both adaptability and transparency. 
2.5 Research Gap 

From the above, we can identify several gaps: 

• A lack of fractionalorder models specifically tailored to ewaste recycling and asset 
recovery. 

• Limited integration of memorydependent dynamics into optimization frameworks for 
recycling systems. 

• Few studies that combine fractional calculus with AI to create hybrid models that are 

both interpretable and adaptive. 
This paper addresses these gaps by proposing a fractionalorder mathematical model of ewaste 

recycling, enhanced with AIdriven optimization for process control and decisionmaking. 
 
 

3. METHODOLOGY 

3.1 Conceptual Framework 

The proposed framework consists of two tightly coupled layers: 

• FractionalOrder Dynamic Layer This layer models the evolution of key system 
variables—such as material inventory, contamination levels, and recovery efficiency—

using fractionalorder differential equations. It captures the physical structure and memory 
effects of the recycling process. 

• AIDriven Optimization Layer This layer uses machine learning and reinforcement 

learning to adjust control variables—such as processing rates, routing decisions, and 
sorting thresholds—based on observed system behavior and performance metrics. 

The interaction is bidirectional: the fractional model provides state information to the AI layer, 
and the AI layer feeds back optimized control actions into the dynamic system. 
3.2 System Stages and State Variables 

We consider five main stages in the ewaste recycling chain: 
• Collection (C) 

• Sorting (S) 
• Dismantling (D) 
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• Material Extraction (E) 
• Refurbishment / Asset Recovery (R) 

For each stage, we define a state variable representing the “risk” or “inefficiency” level, or 

equivalently, the deviation from ideal performance. Let: 
• : inefficiency level in collection (e.g., delays, missed pickups). 

• : sorting inefficiency (e.g., misclassification, contamination). 
• : dismantling inefficiency (e.g., damage to components, low yield). 
• : extraction inefficiency (e.g., low recovery rate, high loss). 

• : asset recovery inefficiency (e.g., low refurbishment success, low resale value). 
We also introduce: 

• : control vector (AIdriven decisions). 
• : operational quality index (training, maintenance, process discipline). 
• : external disturbance or variability (e.g., fluctuating input quality). 

3.3 Fractional Derivative Choice 

We use the Caputo fractional derivative of order , defined for a sufficiently smooth function as: 

 
This operator naturally incorporates memory: the current rate of change depends on the entire 
history of , weighted by a powerlaw kernel. 

3.4 Modeling Assumptions 

To keep the model tractable while still realistic, we assume: 

• Inefficiencies propagate from one stage to the next (e.g., poor sorting increases 
dismantling difficulty). 

• Operational quality reduces inefficiencies across all stages. 

• AIdriven controls can reduce inefficiencies but may incur costs. 
• External disturbances introduce variability in input quality and volume. 

• Fractional order captures the strength of memory effects: lower means stronger historical 
influence. 

 

4. FRACTIONALORDER MATHEMATICAL MODEL 

4.1 System Equations 

We propose the following fractionalorder system for the five stages: 

 
Here: 

• : internal amplification of inefficiency at stage . 
• : transfer of inefficiency from stage to stage . 
• : mitigation due to operational quality . 

• : mitigation due to AIdriven control . 
• : external disturbances affecting each stage. 

4.2 Vector Form 

Let 
Then the system can be written as: 

where: 
• is the internal and transfer matrix with entries and . 
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4.3 Performance Metrics 

We define a global inefficiency index: 
 

and a recovery efficiency index: 
 

Higher corresponds to better overall performance. 
 
5. AIDRIVEN OPTIMIZATION LAYER 

5.1 Control Objectives 

The AI layer aims to choose control actions that: 

• Minimize cumulative inefficiency over a time horizon . 
• Avoid excessive control effort (e.g., cost, energy, labor). 

We define a cost functional: 

 
where balances performance and control cost. 

5.2 Reinforcement Learning Interpretation 

The system can be viewed as an environment with state , action , and instantaneous reward: 
 

A reinforcement learning agent (e.g., deep Qlearning or policy gradient) can be trained to 
approximate an optimal control policy that minimizes or maximizes cumulative reward. 

5.3 Hybrid Structure 

The key point is that the state evolution is governed by the fractionalorder model, not a 
blackbox simulator. The AI agent learns to control a system whose dynamics are explicitly 

defined by fractional differential equations, combining interpretability with adaptability. 
 

6. NUMERICAL SIMULATIONS 

6.1 Numerical Scheme 

To solve the fractional system, we use a predictor–corrector method for Caputo derivatives. For a 

time step and grid , the scheme approximates: 
 
with suitable weights derived from fractional binomial coefficients. The righthand side is then 

used to update . 
6.2 Parameter Selection 

For illustration, we choose: 
• Moderate internal amplification: . 
• Positive transfer coefficients to reflect stage coupling. 

• Mitigation coefficients chosen so that high and significantly reduce inefficiencies. 
• Fractional order varied between and . 

• External disturbances modeled as small oscillatory or random perturbations. 
6.3 Scenarios 

We simulate three main scenarios: 

• Baseline (No AI, IntegerOrder) , , moderate . 
• FractionalOrder Without AI , , same . 

• FractionalOrder with AIDriven Control , learned by a reinforcement learning agent, 
moderate. 
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6.4 Results Overview 

• In the baseline case, inefficiencies initially rise and then slowly decline, but remain at a 
relatively high level due to limited mitigation. 

• In the fractionalonly case, the system exhibits slower decay and more pronounced 
memory effects: past inefficiencies continue to influence the present, revealing hidden 

vulnerabilities that the integerorder model smooths over. 
• In the fractional + AI case, the AI agent learns to apply stronger control actions at 

critical stages (e.g., sorting and dismantling), leading to a faster reduction in and higher . 

The system becomes more stable and resilient to disturbances. 
 

7. DISCUSSION 

The simulations highlight several important insights: 
• Memory Matters The fractionalorder model reveals that ewaste recycling systems are 

strongly influenced by their history. Past inefficiencies, if not addressed, continue to 
affect downstream stages. Integerorder models tend to underestimate this persistence. 

• AI Alone Is Not Enough While AI can optimize control actions, its effectiveness is 
enhanced when it operates on top of a structured, physically meaningful model. The 
fractionalorder dynamics provide a realistic environment for the AI agent to learn in. 

• Hybrid Models Are Powerful The combination of fractional calculus and AI yields a 
system that is both interpretable and adaptive. The mathematical model explains why the 

system behaves as it does, while the AI component learns how to improve it. 
• Operational Implications In practical terms, the model suggests that investments in 

training, maintenance, and process discipline (captured by ) and intelligent control 

(captured by ) can significantly improve asset recovery and reduce waste. 
 

8. CONCLUSION 

This paper presented a fractionalorder mathematical model combined with AIdriven 

optimization for ewaste recycling and asset recovery. By using fractional derivatives, the model 

captures the memorydependent nature of recycling processes, where past inefficiencies and 
operational states continue to influence current performance. The AI layer, built on reinforcement 
learning and predictive control, learns to adjust process parameters to minimize inefficiencies 

and maximize recovery efficiency. 
Numerical experiments indicate that the hybrid fractionalAI framework outperforms both 

classical integerorder models and purely datadriven approaches. It achieves better stability, 
higher recovery rates, and more realistic representation of system dynamics. Conceptually, the 
framework bridges the gap between interpretable mathematical modelling and adaptive AIbased 

optimization. 
Future work may extend this approach by: 

• Incorporating stochastic disturbances more explicitly. 
• Modeling multiple interconnected recycling facilities as a network. 
• Using real operational data from industrial ewaste plants to calibrate and validate the 

model. 
• Integrating economic and environmental metrics into the optimization objective. 

Overall, the proposed framework offers a promising direction for designing intelligent, 
sustainable, and mathematically grounded ewaste recycling systems. 
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