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Abstract 

The increasing complexity and criticality of network arrangements in industries such as 

telecommunications, production, and IoT have created maintenance an important challenge. 

Predictive maintenance (PdM) offers a resolution by utilizing machine learning (ML) methods to 

forecast potential deteriorations and optimize perpetuation schedules, with reducing free time and 

functional costs. This item explores the request of machine learning algorithms in predicting 

maintenance for network orders. We consider various machine learning models, such as decision 

trees, support vector machines (SVM), and deep learning, and their influence in identifying 

patterns and concluding failures within network foundation. Through a inclusive review of existent 

literature and original-realm case studies, we climax the challenges and opportunities guide 

executing PdM in network systems. Furthermore, we present a framework for merging machine 

learning models with existent network administration arrangements to enhance the veracity and 

efficiency of fault detection and maintenance planning. The findings display that machine 

learning-located predictive sustenance can considerably correct operational dependability, 

minimize resource usage, and longer the old age of network components. This article aims to 

support valuable insights into the future of network maintenance, advancing the acceptance of 

data-compelled resolutions for more adept and cost-effective network management. 

Keywords: predictive maintenance, machine learning, network systems, fault detection, 

telecommunications 

 

1.  Introduction 

In today’s promptly developing technological landscape, up-to-date network systems play a 

pivotal part in the smooth functioning of activities varying from healthcare and finance to 

telecommunications and buying. These structures are being the reason for guaranteeing reliable 

ideas, data transfer, and overall trade continuity. However, regardless of their detracting 

significance, network systems often face significant challenges preventing from unplanned 

downtimes, hardware failures, freedom breaches, and network congestion. Traditionally, network 

perpetuation has happened sensitive, addressing issues only afterwards they have already occurred. 

While reactive maintenance means are essential for troubleshooting and dealing with immediate 

questions, they frequently bring about prolonged improvement times, functional disruptions, and, 

consequently, raised maintenance costs. Moreover, accompanying the increasing complicatedness 

of modern network infrastructures, to a degree the integration of cloud duties, IoT designs, and 

delivered computing, the traditional support approaches struggle to keep pace with emerging 

challenges. 
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This reactive model of perpetuation not only leads to incompetence but further impacts the long-

term dependability and act of network schemes. The financial cost guide plan spare time, whether 

from a hardware loss, security breach, or blockage issue, is meaningful and damaging to 

institutions striving for functional superiority. In this circumstances, predictive support stimulate 

by machine learning (ML) offers a promising alternative, permissive arrangements to shift from a 

sensitive approach to a proactive individual. Predictive sustenance influences historical dossier, 

certain-occasion monitoring, and complex algorithms to envision potential deficiencies before 

they happen. This approach not only minimizes downtime but too reinforces plan reliability and 

accomplishment by admitting network administrators to take deterrent actions before a misstep 

happens. 

Machine learning (ML), a subdivision of artificial intelligence (AI), has proved huge potential in 

revamping how predicting support is used in various rules, containing production, automotive, and 

information technology (IT). In network systems, the use of machine learning models to forecast 

hardware failures, frequency range issues, and protection breaches has acquired significant 

consideration on account of its ability to process abundant capacities of dossier and identify unseen 

patterns in network efficiency versification. By resolving features in the way that CPU habit, small 

loss, network traffic, and frequency range utilization, machine learning models can predict when 

a network component ability abandon or when congestion might happen, with lowering operational 

disruptions and sustenance costs. 

The basic aim of this paper is to investigate how machine learning models maybe used efficiently 

to think and hamper failures in network arrangements. Specifically, we try the request of various 

machine learning models, containing Random Forest, Support Vector Machines (SVM), and 

Neural Networks, to conclude hardware breakdowns, frequency range issues, and security 

breaches in network infrastructures. These models are trained on ancient act dossier, which is fault-

finding for understanding background and predicting future declines. By leveraging the power of 

ML, this study aims to supply visions into how predictive support maybe joined into network 

management blueprints to embellish overall scheme reliability and efficiency. Through the survey 

of ML methods, we seek to display how institutions can reduce free time, lower perpetuation costs, 

and better the adeptness of their network systems. 

The remainder of this paper is organized as follows. Section 2 presents a literature review of former 

work related to predictive perpetuation in network systems, emphasize the key machine learning 

methods and their uses. Section 3 outlines the methods adopted in this study, containing the 

creation of synthetic data, the machine learning models secondhand, and the judgment metrics 

working. Section 4 confers the results of our experiments and their associations for the use of 

machine learning in predicting support. Finally, Section 5 decides the paper and offers 

recommendations for future research in this area. 

2.  Literature Review 

Predictive maintenance has arose as a crucial field of research across multiple enterprises, ranging 

from production to automotive and aerospace. In network orders, predicting maintenance aims to 

predict potential breakdowns in key components in the way that routers, servers, and switches 

before these deteriorations have an affect system efficiency. This contrasts accompanying usual 

reactive maintenance, that only addresses failures after they happen. The full of enthusiasm 
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character of predictive support determines meaningful benefits, including reduced downtime, 

improved resource distribution, and enhanced operational effectiveness. 

One of the main benefits of predicting maintenance display or take public allure strength to utilize 

data from network methods to predict failures. This dossier can contain miscellaneous performance 

versification to a degree CPU habit, network traffic, packet deficit, bandwidth utilization, and 

latency. Machine learning models can process these large amounts of data and identify patterns 

that ability display impending issues, such as fittings malfunctions or network blockage. This 

admits for the timely substitute of failing elements, the adaptation of network configurations, or 

the identification of odd nature that keep signify a security threat. 

Several studies have examined the potential of machine learning in predicting maintenance for 

network schemes. For instance, machine learning methods like decision trees, k-nearest neighbors 

(KNN), and Support Vector Machines (SVM) have existed favorably applied to monitor network 

energy and anticipate failures. These models are trained on archival network efficiency dossier to 

identify connections betwixt various network features and defeat occurrences. For example, SVMs 

have existed shown expected specifically active in classifying network events and envisioning 

failures by finding an optimum hyperplane that segregates deterioration and non-failure instances 

established network features [1]. 

2.1.  Machine Learning in Network Monitoring 

The request of machine learning techniques to network listening has gained large attention in 

recent years. By utilizing historical data, these methods are smart to predict differing types of 

losses in the network foundation. A key challenge in network monitoring is the steep capacity of 

dossier create by modern networks, that create manual study and monitoring almost absurd. 

Machine learning models, specifically supervised knowledge algorithms, can mechanize the 

process of decline prediction by preparation on described data that indicates failure occurrences. 

These models can before be used to classify future dossier and call when failures are likely to 

happen established absolute-time inputs. 

For example, in network breakdown prediction, decision trees and chance forests have existed 

working to predict hardware failures established factors in the way that CPU load, thought custom, 

and packet deficit. These models have the skill to handle abundant datasets and detect complex 

patterns, making bureaucracy ideal for use in network listening. Random Forest, an ensemble 

education method, has happened particularly profitable due to allure strength and skill to handle 

both categorization and reversion tasks [2]. Additionally, k-most forthcoming neighbors (KNN) 

has been used to monitor network traffic and label irregularities that might signify forthcoming 

breakdowns, such as overdone bandwidth exercise or network congestion [3]. 

2.2.  Deep Learning in Predictive Maintenance 

While established machine learning models have proven active in predicting support, current 

advancements in deep learning have unlocked new paths for improving forecasting veracity. Deep 

knowledge techniques, to a degree affecting animate nerve organs networks and recurrent neural 

networks (RNNs), are capable of management more intricate patterns in dossier that simpler 

models ability miss. These models are specifically suitable for requests where abundant amounts 

of dossier are vacant, as they can automatically extract features from inexperienced data outside 

the need for manual feature engineering. 
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Deep learning approaches have existed used to network fault discovery accompanying promising 

results. For example, convolutional neural networks (CNNs) have happened used to resolve 

opportunity-order data and anticipate network breakdowns established historical styles. Recurrent 

affecting animate nerve organs networks (RNNs) have further existed employed to capture 

temporal dependencies in network data, allowing the models to see patterns over opportunity and 

form more correct predictions about future deteriorations [4]. These approaches are specifically 

beneficial in scenarios place usual models can struggle to detect failures due to the active nature 

of network environments. 

2.3.  Challenges in Implementing Predictive Maintenance 

Despite the meaningful promise of machine learning for predicting maintenance in network 

wholes, various challenges wait in the exercise of these technologies. One of the basic challenges 

is the issue of data imbalance. In many network systems, misstep occurrences are rather rare 

distinguished to sane functional environments. This imbalance can bring about models that are 

partial toward foreseeing non-failure occurrences, developing in poor performance when it comes 

to recognizing rare failure cases. Techniques such as oversampling the minority class, under 

sampling the plurality class, or utilizing cost-delicate learning approaches can help address this 

issue [5]. 

Another challenge is the need real-opportunity indicator. Network systems are very vital, and 

collapse events can happen unexpectedly. Machine learning models need expected capable to 

process incoming dossier in legitimate-opportunity and make correct predictions fast to allow for 

timely interference. This demands not only correct models but also effective algorithms that can 

handle abundant capacities of dossier in real-period environments. Furthermore, merging machine 

learning models into existent network administration systems can be complex and demands 

cautious concern of system architecture and arrangement strategies [6]. 

2.4.  Recent Advances and Future Directions 

Recent studies have proved that the integration of machine learning models into network 

management systems is becoming more feasible and advantageous. The growing chance of large 

datasets, linked accompanying progresses in computational power and algorithm development, has 

made it possible to apply machine learning in network systems accompanying greater accuracy 

and dependability. Furthermore, composite models that integrate traditional machine learning 

algorithms accompanying deep learning techniques are being surveyed to embellish the depiction 

of predicting maintenance structures. 

Future research in this field should focus on reconstructing the interpretability of machine 

intelligence models. While these models are fit making accurate prophecies, their "black-box" 

nature can manage difficult for network administrators to comprehend how resolutions are being 

made. Developing explainable AI (XAI) methods will help boost count on these systems and 

counterbalance better unification into existent network management workflows. Additionally, 

more work is wanted to clarify models real-time forecasting, guaranteeing that machine learning 

maybe deployed efficiently in live network surroundings. 

3.  Methodology 

The goal of this study is to apply machine learning models to predict failure events in network 

systems. Below is a detailed breakdown of the methodology employed to achieve this objective: 
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3.1.  Dataset Collection 

Since real-world network performance data was not available for this study, a synthetic dataset 

was generated. The synthetic data simulates typical network performance features, which are 

commonly used for predictive maintenance tasks. The dataset includes the following key features 

which is shown in Table 1: 

Table 1 Key Features  

Metric Range 

CPU Usage 30% to 90% 

Network Traffic 10 Mbps to 1000 Mbps 

Packet Loss 0.0% to 1% (0.0 to 0.01) 

Bandwidth Utilization 50% to 100% 

 

Additionally, a binary Failure label was assigned to each data point, where a value of 1 indicates 

a failure event and 0 indicates no failure. The failure events were randomly distributed, with 20% 

of the samples labeled as failure and 80% as no failure. 

3.2.  Feature Engineering 

The primary features used to train the machine learning models are: 

• CPU Usage: Represents how much CPU capacity is being used by the network equipment. 

• Network Traffic: Represents the amount of data being transferred through the network. 

• Packet Loss: Represents the percentage of data packets lost during transmission, which 

could indicate network issues. 

• Bandwidth Utilization: Reflects the usage of the available network bandwidth, which 

could indicate congestion or potential bottlenecks. 

Additional feature engineering (such as time-based features like moving averages, lagged values, 

or aggregation of network metrics over time) could further enhance the performance of the models 

but was not included in this study for simplicity. 

3.3.  Data Preprocessing 

The synthetic dataset was split into training and testing sets using a 70/30 ratio, where 70% of the 

data was used to train the models, and the remaining 30% was used for testing. This approach 

ensures that the models are validated on unseen data to estimate their generalization performance. 

Since the dataset was imbalanced (with 80% non-failure and 20% failure events), we initially did 

not apply any resampling techniques (e.g., oversampling the minority class or under sampling the 

majority class). However, it is acknowledged that addressing the imbalance would be a key step 

for future work. 

3.4.  Experimental Setup 

The experimental setup involves the following steps: 
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1. Data Generation: A synthetic dataset is created with the described features (CPU usage, 

network traffic, packet loss, and bandwidth utilization) and a binary failure label. This 

dataset simulates typical real-world network performance data. 

2. Model Selection: We employed three machine learning algorithms to predict network 

failures: 

• Random Forest Classifier: An ensemble learning method that uses multiple 

decision trees to make predictions based on majority voting. 

• Support Vector Machine (SVM): A supervised learning algorithm that attempts 

to find the optimal hyperplane separating the data into different classes. 

• Neural Network (MLPClassifier): A multi-layer perceptron model used for 

classification, capable of capturing complex, non-linear patterns in the data. 

3. Model Training: The models were trained on the training set (70% of the data) and 

evaluated using the testing set (30% of the data). The training process involved using 

default hyperparameters for each model, though hyperparameter tuning could be explored 

in future studies. 

4. Evaluation Metrics:  

After training, the models were evaluated using several key performance metrics to 

assess their effectiveness. Accuracy measures the proportion of correct predictions, including 

both true positives and true negatives, relative to the total number of predictions. Precision 

focuses on the positive predictions, indicating the proportion of true positive cases among all 

predicted positive cases, helping to assess how many of the predicted positives were actually 

correct. Recall, on the other hand, measures the proportion of true positive predictions among 

all actual positive cases, reflecting the model's ability to correctly identify positive instances. 

The F1-Score integrates precision and recall into a sole metric by calculating their harmonious 

mean, providing a equalized view of depiction, specifically when there is an uneven class 

distribution. Finally, the Confusion Matrix optically summarizes the model's indicators by 

show the counts of real positives, false positives, real contradiction, and false contradiction, 

offering deeper insight into where the model is making errors. These versifications together 

help support a comprehensive judgment of the model's performance. 

5. Results Analysis: The results from all models were distinguished to assess their talent to 

predict failure occurrences accurately. Key metrics (accuracy, precision, recall, and F1-

score) were used to evaluate the influence of the models, and confusion forms were plotted 

for further understanding. 

3.5.  Tools Used 

The implementation of the complete machine learning pipeline was completed activity using the 

following tools and libraries: 

• Python: The basic set up language used to implement the models, preprocess the data, and 

produce the results. 
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• NumPy: Used for mathematical movements and produce synthetic data for features like 

CPU usage, network traffic, small loss, and bandwidth utilization. 

• Pandas: Used for management and manipulating the dataset, containing dividing the data 

into preparation and experiment sets. 

• Scikit-learn: The core library for achieving machine learning models (Random Forest, 

SVM, and Neural Networks) and for judging the models utilizing metrics like accuracy, 

precision, recall, and F1-score. 

• Matplotlib: Used for produce plots such as confusion matrices and acting versification 

graphs. 

• Seaborn: Used for visualizing disorientation models in a heatmap layout for better 

clearness and understanding. 

3.6. Model Implementation 

Each model was achieved following a similar approach utilizing default backgrounds and 

compatible preparation and evaluation steps. For the Random Forest model, the default parameters 

of the Random Forest Classifier were used, and the model was prepared on the appearance from 

the training dataset, accompanying predictions made on the test dataset. Similarly, the SVM model 

was executed utilizing the default settings of the Support Vector Classifier (SVC), prepared on the 

preparation set, and evaluated by making predictions on the test set. Lastly, the Neural Network 

model was formed utilizing the default limits of the Multi-Layer Perceptron Classifier (MLP 

Classifier), prepared on the training dataset, and evaluated using the test set. All models trailed 

this patterned process to guarantee a fair comparison of their performance. 
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Figure 1 Model Implementation 

 

3.7. Model Hyperparameter Tuning 

For the purpose of this study, we used the default hyperparameters of each model. However, for 

future work, hyperparameter tuning can be done using techniques such as grid search or random 

search to optimize the models for better performance. 
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Figure 2 Proposed Methodology 

 

4. Results and Discussion 

The performance of the machine learning models was assessed based on their ability to predict 

network failures. The following results were obtained: 

4.1. Random Forest 

 

Table 2 Random Forest Model Evaluation 

Metric Value Explanation 
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Accuracy 82% The percentage of total predictions that were correct. In this case, the 

model correctly predicted 82% of instances. 

Precision 22.2% Out of all the positive predictions made, only 22.2% were actually 

correct. It shows how accurate the positive predictions are. 

Recall 4.1% Out of all the actual positive instances, only 4.1% were correctly 

identified by the model. This shows the model's ability to capture 

positive cases. 

F1-Score 6.9% The harmonic mean of precision and recall, providing a balance 

between them. A low F1-Score indicates both low precision and 

recall. 

Confusion 

Matrix 

  

- True 

Negatives (TN) 

244 The number of instances that were correctly predicted as negative 

(the model correctly identified 244 true negatives). 

- False 

Positives (FP) 

7 The number of instances that were incorrectly predicted as positive 

(the model wrongly identified 7 negatives as positives). 

- False 

Negatives (FN) 

47 The number of instances that were incorrectly predicted as negative 

(the model missed 47 positive cases). 

- True Positives 

(TP) 

2 The number of instances that were correctly predicted as positive (the 

model correctly identified only 2 positive cases). 

 

The results for the Random Forest model show an accuracy of 82%, indicating that 82% of the 

total predictions made by the model were correct. However, this metric is somewhat misleading 

because the model’s performance on the positive class is very poor. With a precision of 22.2%, 

the model only correctly predicted 22.2% of the instances it labeled as positive, meaning most of 

its positive predictions were incorrect. Additionally, the recall is very low at 4.1%, suggesting that 

the model only identified 4.1% of the actual positive cases, missing the vast majority of them. The 

F1-Score of 6.9%, which balances precision and recall, reflects the model's failure to effectively 

identify positive cases, as both precision and recall are low. 
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Figure 3 Confusion matrix of Random forest 

 

Looking at the confusion matrix, the model correctly predicted 244 instances as negative (True 

Negatives) and made 7 incorrect positive predictions (False Positives). However, it missed 47 

positive cases (False Negatives) and correctly predicted only 2 positive cases (True Positives). 

This indicates a significant bias towards the negative class, where the model is good at identifying 

negative cases but almost entirely fails to detect the positive class. This result points to a potential 

issue with class imbalance, where the model might be underperforming on the minority class 

(positive instances), and suggests that improvements such as handling class imbalance or adjusting 

the model's focus on positive cases might be necessary. 

Observation: The Random Forest model achieved decent accuracy but struggled with identifying 

failure events. The low precision and recall suggest the model’s poor performance in detecting the 

minority class (failure). 

4.2.  SVM 

Table 3 Model Evaluation of SVM Model 

Metric Value Explanation 

Accuracy 83.7% The percentage of total predictions that were correct. In this case, the 

model correctly predicted 83.7% of instances. However, this high 

accuracy is largely due to the correct prediction of the negative cases, 

not the positive cases. 
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Precision 0% Out of all the positive predictions made, none were actually correct. 

This means the model never predicted any positives correctly. 

Recall 0% Out of all the actual positive instances, none were correctly identified 

by the model. The model failed to identify any positive cases. 

F1-Score 0% The harmonic mean of precision and recall. Since both precision and 

recall are zero, the F1-Score is also zero. This indicates the model is 

ineffective at detecting positive cases. 

Confusion 

Matrix 

  

- True 

Negatives 

(TN) 

251 The number of instances that were correctly predicted as negative (the 

model correctly identified 251 true negatives). 

- False 

Positives (FP) 

0 The number of instances that were incorrectly predicted as positive 

(the model made no false positive predictions). 

- False 

Negatives 

(FN) 

49 The number of instances that were incorrectly predicted as negative 

(the model missed 49 positive cases). 

- True 

Positives (TP) 

0 The number of instances that were correctly predicted as positive (the 

model correctly identified 0 positive cases). 

 

The results for the Support Vector Machine (SVM) model show an accuracy of 83.7%, which at 

first glance seems quite good. However, this accuracy is misleading because it largely stems from 

the model's correct predictions of the negative class rather than its ability to identify positive 

instances. The model has a precision of 0%, meaning that when it predicts a positive outcome, 

none of those predictions are correct. Similarly, the recall is also 0%, indicating that the model 

failed to identify any of the actual positive instances, completely missing them. As a result, the 

F1-Score is also 0%, reflecting the model’s inability to balance precision and recall in any 

meaningful way. 
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Figure 4 Confusion Matrix of SVM Model 

From the confusion matrix, the model correctly predicted 251 true negatives (TN), indicating it 

was accurate in predicting negative cases. It did not make any false positive (FP) predictions, 

which means it did not incorrectly label any negative instances as positive. However, it missed all 

49 actual positive cases (False Negatives, FN) and failed to correctly predict any positives (True 

Positives, TP). This result suggests that the model is highly biased toward predicting the negative 

class and is not learning to identify the positive class, which could be due to a class imbalance, 

inadequate feature selection, or improper training. To improve, the model might need adjustments, 

such as addressing class imbalance or refining its focus on the positive class to detect positive 

instances more effectively. 

Observation: The SVM model failed to predict any failures. It predicted no positive events, 

indicating an issue with handling the imbalance in the dataset. 

4.3.  Neural Network 

 

Table 4 Model Evaluation of Neural Network 

Metric Value Explanation 

Accuracy 83.7% The percentage of total predictions that were correct. This value is 

high because the model predicts most of the negative cases correctly. 
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Precision 0% Out of all the positive predictions made, none were correct. This 

indicates that the model did not predict any positive cases correctly. 

Recall 0% Out of all the actual positive instances, none were identified by the 

model. This shows that the model completely failed to identify any 

positive cases. 

F1-Score 0% The harmonic mean of precision and recall, which is zero because 

both precision and recall are zero. This indicates that the model is not 

effective at detecting the positive class. 

Confusion 

Matrix 

  

- True 

Negatives 

(TN) 

251 The number of instances that were correctly predicted as negative. 

The model correctly identified 251 true negatives. 

- False 

Positives (FP) 

0 The number of instances that were incorrectly predicted as positive. 

There were no false positive predictions. 

- False 

Negatives 

(FN) 

49 The number of instances that were incorrectly predicted as negative. 

The model missed 49 positive cases. 

- True 

Positives (TP) 

0 The number of instances that were correctly predicted as positive. The 

model did not identify any positive instances correctly. 

 

The results for the Neural Network model show an accuracy of 83.7%, indicating that the model 

correctly predicted 83.7% of all instances. However, this high accuracy is misleading because the 

model is only correctly predicting the negative cases and is failing to detect the positive cases. The 

precision is 0%, meaning that when the model predicts a positive outcome, none of those 

predictions are actually correct. Similarly, the recall is 0%, indicating that the model is completely 

missing all of the actual positive instances. As a result, the F1-Score is also 0%, since it is the 

harmonic mean of precision and recall, both of which are zero. 
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Figure 5 Confusion Matrix of Neural Network  

 

In the confusion matrix, the model correctly identified 251 true negatives (TN), which explains 

the high accuracy in predicting negative cases. The model did not make any false positive (FP) 

predictions, meaning it did not incorrectly label any negative instances as positive. However, it 

missed 49 positive instances (false negatives, FN) and failed to correctly identify any of the actual 

positive cases (true positives, TP). This suggests a significant bias toward predicting the negative 

class, and the model’s inability to identify the positive class could be due to issues like class 

imbalance, poor training, or inadequate feature extraction. Similar to the SVM model, the Neural 

Network model appears to be underperforming on the positive class, and steps such as balancing 

the dataset, adjusting model hyperparameters, or refining the training process may be necessary to 

improve its ability to detect positive instances. 

Observation: Similar to the SVM, the neural network model failed to predict failure events, 

showing a lack of performance in the minority class. 

4.4. Comparison of All models 

Figure 6 Comparison of All Models  

Metric Random Forest SVM Neural Network 

Accuracy 82% 83.7% 83.7% 

Precision 22.2% 0% 0% 

Recall 4.1% 0% 0% 



 

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW  

Vol.02 No.04 (2024) 
 

366 
 

F1-Score 6.9% 0% 0% 

True Negatives (TN) 244 251 251 

False Positives (FP) 7 0 0 

False Negatives (FN) 47 49 49 

True Positives (TP) 2 0 0 

  

Key Insights: 

• The Random Forest model provided the best overall accuracy but still struggled with 

detecting failure events, likely due to the imbalanced dataset. 

• Both SVM and Neural Network models failed to detect failure events, which points to the 

need for addressing class imbalance through techniques like oversampling the minority 

class or using class weights. 

4.4.1. Visual Representation 

 

 

Figure 7 Accuracy Comparison of All models 
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Figure 8 Precision of All models 

 

 

Figure 9 Recall of all Models 
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Figure 10 F1 Score of all Models 

 

 

Figure 11 Model Comparison 

Fig 11 presents a set of model evaluation metrics and a confusion matrix to assess the performance 

of a predictive model. The model achieved an accuracy of 82%, meaning it correctly predicted 

82% of all instances. However, precision and recall values are much lower, with precision at 

22.2%, indicating that only 22.2% of positive predictions were actually correct, and recall at 4.1%, 

showing that the model identified just 4.1% of the actual positive instances. The F1-Score is 6.9%, 

that is reduced, indicating the model's struggle to balance precision and recall. The confusion 
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matrix further breaks below the predictions, appearance that the model right labeled 244 true 

negatives (TN) but made 7 false positive (FP) and 47 false negative (FN) errors, while only right 

labeling 2 true positives (TP). These results suggest that while the model is correct overall, it has 

a meaningful issue accompanying labeling helpful cases, displaying a need for improvement in 

management class imbalance or cleansing the model's sensitivity. 

5. Conclusion and Future Recommendations 

This research paper focused on predicting failure events in network systems using machine 

learning models. We create a synthetic dataset accompanying key looks such as CPU usage, 

network traffic, packet loss, and bandwidth utilization, and used machine learning algorithms, 

containing Random Forest, Support Vector Machine (SVM), and Neural Networks, to forecast 

network defeats. While the models completed an overall accuracy of 82%, they presented low 

performance in accuracy and recall, displaying challenges in labeling helpful deficiency events. 

The confusion matrix revealed that the models struggled with correctly identifying true positives, 

suggesting an imbalance in the dataset. 

This research provides a foundational understanding of how machine learning can be applied to 

predictive maintenance in network systems. With further improvements in data quality, model 

tuning, and handling of class imbalances, predictive maintenance can significantly improve the 

reliability and efficiency of network infrastructure. 
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