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Abstract:  
Among cancer-related deaths worldwide, lung cancer remains one of the leading causes, primarily due to late 

diagnosis and limited treatment options at advanced stages. Early detection through medical imaging plays a 

crucial role in improving survival rates; however, many existing automated detection methods rely on a single 

imaging modality and limited datasets, reducing their reliability in clinical settings. This paper presents a dual-

modality, multi-hybrid deep learning approach for lung cancer detection using chest X-ray and computed 

tomography (CT) images. Each imaging modality is trained separately on carefully prepared and augmented 

datasets using transfer learning to enhance robustness and generalization. MobileNet and DenseNet 

architectures are employed to effectively capture modality-specific features. The chest X-ray dataset is 

categorized into three classes, while the CT scan dataset consists of two classes, reflecting their diagnostic 

differences. A combined data generator is used to train the dual-modality framework, enabling effective 

learning from both image sources. Experimental results show that the CT-based model achieves an accuracy of 

93%, while the X-ray-based model attains an accuracy of 89.50%. These findings indicate that modality-specific 

learning within a dual-modality framework improves detection performance and supports more reliable AI-

assisted lung cancer diagnosis. 
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1- Introduction: 

Lung cancer has remained among the most aggressive and life-threatening cancers in the 

globe, and one of the top causes of cancer mortality in high-income and low-income 

localities[1]. International cancer surveillance studies[2] reveal that millions of people die 

across the world annually due to lung cancer, indicating that besides being a significant health 

challenge, it is also a significant socioeconomic challenge to the global society[3]. The 

disease tends to develop without symptoms and the symptoms manifest themselves when the 

cancer is at a very advanced stage. Consequently, a timely diagnosis is a key factor in 

determining patient outcomes [4]. Regrettably, diagnoses are made late in the majority of 

cases and treatment methods, including chemotherapy, radiotherapy, targeted therapy, or 

surgery, are much less effective at that stage. This has been an ancient challenge that has 

made researchers, clinicians and the technologists to seek more dependable and precise ways 

that are able to diagnose lung cancer at the earliest stages of detection[5]. 

Lung cancer screening and diagnosis has traditionally been based on the use of medical 

imaging. Chest X-rays and computed tomography (CT) are two commonly used imaging 

modalities among the other tools used in clinical practice. Chest X-rays are cheap, they are 

common and can be used in mass screening programs. Nevertheless, they frequently fail to 

detect specific signs of cancers since the structures of anatomies are similar and the images 

are not clear. CT scans on the other hand provide high-resolution three-dimensional images of 

the internal lung structures hence much more effective in detecting small nodules and subtle 

abnormalities. The problem though is that both imaging methods heavily rely on manual 

interpretation[6]. Even seasoned radiologists may encounter a problem of differentiating early 

cancerous nodules and benign pathologies, particularly in the busy clinical schedules, where 

the chances of fatigue and subjectivity may interfere with perfection[7]. These drawbacks 
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emphasize the necessity of automated and objective aids[8], which can help clinicians to 

improve the accuracy of early detecting and to provide the same quality of diagnosis[9].  

Deep learning is one of the most revolutionary fields[10] in the analysis of medical images in 

the last ten years. Convolutional Neural Networks (CNNs) have shown impressive 

capabilities in identifying visual patterns, detecting small features in an image, and 

performing a classification task with remarkable accuracy, often competing or surpassing the 

accuracy of a human. The most important advantage of CNNs is that, they are able to extract 

complex, non-linear relations using raw image data without any handcrafted feature extractor. 

A number of researchers have been able to apply CNN-based models to lung nodule 

classification, malignancy prediction, segmentation, and disease staging. Although these 

improvements have been made, there are still various obstacles that restrict the large-scale 

clinical implementation of the deep learning models in the detection of lung cancer. [5] 

The major limitation in the current research is that it has over-relied on single-modality 

imaging. The majority of the research uses either chest X-rays or CT scan to analyze data, 

which does not allow the diagnostic system to maximize the benefits of each modality. X-

rays provide fast screening and CT scan provides detailed information on the structure and 

this contributes to the precision of the diagnostics. Integrating the two modalities under one 

deep learning structure can lead to a higher accuracy, less false negative and better clinical 

decision making. [6]Nevertheless, there has been little research on such multimodal 

integration and it is still technically difficult. Sealing this research gap is the key to coming 

up with AI systems that are more akin to the holistic diagnostic process of radiologists in the 

real clinical settings. 

The other significant weakness with the past research relates to diversity and generalizability 

of the dataset. Most research studies are based on small, single-source datasets that are not 

representative of the entire range of patient demographics, differences in equipment used in 

imaging, and disease manifestations in actual hospitals. [7]The models which have been 

trained on a small set of data tend to fail when encountered on novel populations or new 

imaging settings. To resolve this obstacle, our study deliberately chooses a dataset approach 

that will have the highest variability and realism. In the case of the CT scan, we used a set of 

images of various publicly available datasets to create a varied dataset of 6,063 images which 

were labeled either as Cancerous or as Normal. Following massive preprocessing, we had 

carried out hi-tech image augmentation in order to create realistic changes in brightness, 

contrast, orientation and noise in the real world. This increased data enabled the deep learning 

model using CT to attain an accuracy of 93.49% with high generalization and stability.  

In the case of the chest X-ray model, we adopted an organized CSV-based dataset and a 

detailed augmentation pipeline to expand the size of the dataset and alleviate overfitting. Our 

preprocessing methods and network design were effective since this model attained an 

accuracy of 89.50. Put together, these findings indicate that well organized datasets with 

augmentation strategies can go a long way in improving the robustness and reliability of the 

models.  

In this research, the technical methodology is also used, which leads to better performance 

and reproducibility. To classify the CT scans, we resorted to a transfer learning model, which 

utilizes EfficientNet, an efficient architecture of a deep learning network, and with great 

feature detection potential. The model used more than 4 million trainable parameters, and a 

range of optimization techniques, including EarlyStopping, reduction of the learning-rate by 

ReduceLROnPlateau and periodic model checkpointing. Such methods guaranteed the 

smooth convergence of the model and avoided overfitting.  

To analyze X-ray images, we used the DenseNet121 architecture that is famous due to its 

dense connectivity structure that enables successful feature reuse. The three-class (i.e., 
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distinguishing between Benign, Malignant and Non-Nodule images) classification task was 

trained with optimized preprocessing steps and learning-rate schedule using the model. The 

approach to the model provided the ability to elicit rich visual features and also treat high 

accuracy in the course of the training. Contemporary computational applications and 

environments were instrumental in helping our study. All were trained within Google Colab 

which had access to high-performance resources in the form of a GPU that is necessary to 

train deep learning models. Python was chosen as the main program language because of its 

large scientific computing libraries. Also, AI-assisted systems included the Gemini API and 

the google-colab-ai library facilitated multimodal data analysis, extraction of structured data, 

and documentation. Libraries such as cuDF which are accelerated by GPU also simplified the 

large-scale processing of data to a significant extent, accelerating it and making experiments 

to be efficient.  

The model interpretability is the other critical element of AI adoption in healthcare. In spite 

of the fact that deep learning systems may provide high levels of accuracy, clinicians tend to 

be reluctant to use the tools that operate as black boxes. Grad-CAM and attention heatmaps, 

as interpretability methods do provide some understanding of how a model is making 

decisions, but they are not as transparent as they need to be to be used in a clinical setting 

without doubts. Due to this reason, our research has placed a strong focus on the need to 

formulate interpretable diagnostic models that do not only predict but also support their 

decisions in a visual manner. This anthropomorphic design ideology is critical in ensuring the 

bridging of the artificial intelligence-clinical acceptance gap. 

In general, this study fills in three significant knowledge gaps in the existing literature: 

The lack of deep learning models that combine X-ray and CT images to better diagnose a 

patient, the scarcity of various datasets that guarantee the generalizability of models in the 

real world, and the absence of interpretable AI systems that can be combined into clinical 

systems.  

Through the synthesis of multimodal imaging, the introduction of strong deep learning 

models, the rigorous use of data augmentation methods and use of advanced AI tools, the 

proposed research would create a scalable, interpretative, and clinically significant lung 

cancer detection system. Eventually, this study is meant to be useful in assisting the 

radiologists to make more accurate, faster, and reliable diagnostic choices to enhance patient 

outcomes and develop AI-supported healthcare interventions.  

In addition to training independent CT scan and chest X-ray models, this study introduces a 

unified multimodal deep learning framework that jointly analyzes both imaging modalities to 

improve diagnostic accuracy and clinical reliability. The motivation behind this integration 

lies in the complementary characteristics of the two modalities: CT scans provide detailed 

three-dimensional structural information, while X-rays offer broader anatomical context at 

lower cost and radiation exposure. By fusing features extracted from both modalities within a 

unified multi-input architecture, the proposed approach facilitates richer representation 

learning and reduces the risk of modality-specific misclassification. 

The combined model employs parallel convolutional neural network branches for CT scans 

and chest X-ray images, with each branch initialized using ImageNet pre-trained weights. 

Feature representations from both streams are subsequently fused at the feature level and 

passed to modality-specific output heads. This design allows the network to learn shared and 

complementary discriminative patterns while jointly optimizing the classification tasks for 

both imaging modalities. Such a multimodal learning strategy enhances robustness, enhances 

generalization across heterogeneous datasets, and more closely reflects real-world clinical 

diagnostic workflows, where multiple imaging modalities are assessed collectively. 

Consequently, the combined model serves as a scalable and clinically aligned extension of the 
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unimodal approaches, strengthening the practical applicability of AI-driven lung cancer 

detection systems. 

2- Literature Review: 
The field of lung cancer diagnosis has significantly transformed due to the rapid growth of 

medical imaging and artificial intelligence. In the last ten years, the primary approach for 

automated detection of lung nodules is deep learning using radiological data. Many 

researchers have reviewed convolutional neural networks (CNNs) and transfer learning and 

combine models to improve detection, precision, accuracy, cancer identification in early stage 

and reduce diagnostic time. Although significant progress has been made like 

methodological, structural, and practical gaps remain, multi-modal integration, and real world 

deployment. This literature review synthesizes key findings from existing studies, comparing 

X-ray and CT-scan based deep learning models for lung cancer detection using balanced 

datasets and also this research highlights limitations, and demonstrates the research gap filled 

by the present studies.  

The importance of deep convolutional networks for medical image classification have 

emphasized by several studies especially in lung cancer imaging. Initial studies mainly 

concentrated on classical CNNs trained on single datasets, showing encouraging but 

constrained performance.These models frequently depended on manually designed features 

or shallow architectures, which limited their ability to identify subtle cancerous patterns. 

After that studies adopted deeper pre-trained networks like ResNet, DenseNet, VGG and 

Inception demonstrating significant improvements in accuracy and robustness. Transfer 

learning has become a leading approach because it compensates for confined datasets by 

utilizing ImageNet pre-trained weights. While transfer learning substantially accelerated 

progress, existing literature repeatedly noted challenges related to small sample sizes and 

imbalance datasets, the risk of overfitting due to lack of enhancement. Many researchers 

trained their models on single-source datasets, which decrease variability and limiting the 

models’ generalizability to real-world lung cancer cases.  

An important focus in recent research is the comparison between X-ray and CT imaging 

modalities. Some studies focused entirely on chest X-rays because of their accessibility, while 

others depended only on CT scans due to their detailed cross-sectional representation of lung 

tissue. X-ray-based studies commonly demonstrated moderate results but struggled with 

identifying small nodules, because of the low image contrast and overlapping anatomy. On 

the other hand, CT-based studies benefited from high-resolution volumetric data, enabling 

more accurate segmentation and classification. However, studies focusing on CT data often 

relied on limited datasets or did not employ effective augmentation techniques, poorly in 

clinical settings but leading to models that performed well in controlled datasets. 

Furthermore, numerous CT studies employed segmentation-intensive pipelines that required 

manual annotation, which increased complexity and limited scalability. 

Another collection of studies focused on hybrid and multi-stage deep learning pipelines. 

These methods included combining segmentation models with classification networks, 

integrating feature fusion layers and using attention mechanisms. While these methods 

improved high sensitivity and minimized false negatives, they frequently demanded 

substantial computational resources and were not feasible for smaller research setups. In 

addition, several hybrid-model studies lacked proper  validation, relying only on accuracy 

while ignoring recall misclassification risks or precision these are important considerations in 

cancer diagnosis. Many other studies did not investigate performance with data augmentation 

and limits the ability to generalize findings by comparing alternative architectures. 

Reviewing the five research papers of recent years, a common constraint appears across all: 

none of them analyzed and compared performance concurrently on both CT-scan and X-ray 
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datasets using trained deep learning models. Most research focused on only one imaging 

modality, which restricts their scope which restricts their role in providing a thorough 

understanding lung cancer detection. Furthermore, some papers made extensive use of pre-

existing benchmark datasets without addressing problems like class imbalance, lack of image 

diversity or limited cancerous samples. Several studies experimenting with optimization 

strategies without training parameters such as early stopping, rate scheduling, or model 

checkpointing these techniques can substantially reduce overfitting.  

Another common gap is the inadequate emphasis on confidence based decision rules in 

previous literature. Many previous works ignoring the related probability score and 

classifying images based on the predicted output label. None of the studies explicitly set a 

confidence level for categorization cancerous versus non-cancerous outcomes, making the 

diagnosis difficult for radiologists or clinical deployment. Also many studies lacked a 

discussion for improving robustness in augmented datasets. 

Unlike most previous studies, this research uses a unique approach by training two separate 

deep learning models one trained on CT-scan images and the other on X-ray images using 

structured preprocessing, augmentation techniques and well prepared datasets. The literature 

shows that very small number of studies compare results across different imaging types under 

same conditions. This gap is important because CT and X-ray images are very different in 

quality, resolution, anatomical clarity and clinical use. By working with both modalities, this 

research gives a clearer and more holistic understanding of the strengths and each imaging 

method can and cannot do for lung cancer detection. 

Another significant gap in earlier research is the most studies lack the transparent model 

optimization strategies. Many papers mentions accuracy but rarely details the training 

behavior, learning rate adjustments, and checkpoint methods. In contrast, this paper 

introduces callback-based optimization methods (like Early Stopping and 

ReduceLROnPlateau),, which enhaces the training more stable and ensures the final model 

uses the best weights correspond to the best-performing epoch. This careful and transparent 

approach makes your contribution more reliable and reproducible compared to earlier studies 

that did not include these aspects. 

Data diversity is another study which is critical limitation in many studies reviewed. Most 

papers used only one dataset, , often with limited variability in age groups, image quality, or 

disease stages. This research solves this problem by constructing a larger and more diverse 

CT dataset from multiple sources and applying extensive augmentation to mimic real-world 

imaging conditions. This enhances generalization and reduces bias —a challenge repeatedly 

highlighted but did not actually fix. 

Furthermore, most previous studies used CNNs or transfer-learning networks, but did not 

explain how efficient their architectures were, they reported details like the number of 

parameter counts, or trainable-to-nontrainable ratios.This research explicitly analyzes these 

characteristics, and showing that the CT model i built has about 4 million parameters and a 

well-balanced structure. This clarity allows better comparison with future studies and 

supports more open and clear deep-learning practices in medical imaging.  

Finally, most past studies do not directly compare performance metrics across modalities. 

Many papers report accuracy, but few papers contrast the predictive strength of models 

trained that how well X-ray models perform versus CT-scan models. By clearly showing that 

the CT model achieved 93% accuracy and 89.50% for X-ray images your research gives 

useful insight into modality effectiveness—a gap absent in most earlier works.  

In conclusion, while previous studies have made notable progress in using deep learning–

based lung cancer detection, they still show clear gaps in dataset diversity, augmentation 

optimization strategies, and multi-modality comparisons. Your research addresses these issues 
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by training two separate models on X-ray and CT images implementing structured 

augmentation, comparing performance across modalities and optimizing training through 

callbacks. This dual-model approach, along with a strong focus on diverse data and stable 

training, marks a distinct improvement over the studies reviewed and provides a solid 

foundation for future research in deep learning–based lung cancer detection. 
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3- Methodology  

The proposed study will be conducted in the form of a three-stage experimental approach 

aimed at the systematic study of the detection of lung cancer using deep learning in the 

single-modality and multimodal environment. The independent deep learning models were 

trained and trained separately in the first two stages on the images of CT scan and chest X-ray 

to provide powerful modality-specific baselines. Finally, a multimodal feature-fusion model 

was presented where features acquired on CT and X-ray were simultaneously optimized 

together in a single deep learning system. It is a progressive design that can compared the 

single-modality learning with the integrated multimodal learning in a transparent way and fill 

the necessary gaps in the literature, such as modality dependence, weak generalizability, and 

absence of cross-modal analysis. All experiments were done in GPU-accelerated 

environments to provide efficiency in computation, stability in training and reproducibility. 

 
Figure 3.0.1 

 
Figure 3.0.2 
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Figure 3.0.3: Overall workflow of the proposed three-stage lung cancer detection framework, 

illustrating unimodal training on CT and chest X-ray images followed by multimodal feature-

level fusion. 

 

3.1- Construction and Organization of the Dataset:  

This study utilized two heterogeneous radiological imaging datasets that resembled the real-

world clinical diagnostic processes with the combinations of multiple imaging modalities 

being complementary. 

The dataset on the CT scan was assembled consisting of aggregation of images of various 

publicly available repositories, totaling to 6,063 CT images. The images were coded as to one 

of two clinically relevant categories, including Cancerous and Normal. This multi-source 

construction method is closely chosen to bring about variation in the type of scanners, 

protocols of acquisition, image resolution, contrast and the demographics of patients hence 

increasing the diversity in the data set and minimize dataset bias.  

The data of the chest X-ray used the structured CSV-based annotation and was divided into 

three diagnostic categories: Benign, Malignant, and Non-Nodule which created a three-class 

problem. The X-ray images have less contrast and an overlapping anatomy as compared to 

the CT scans making it difficult to classify them accurately and clinically interpolating.  

During the initial stage of experimentation, these datasets served as an independent input to 

end up training two different deep learning models one of them was fully trained to classify 

CT scans and the other one was fully trained to classify chest X-rays. In the second step, the 

two datasets were used in a multimodal learning setup, in which the CT and X-ray images 

were fed through two independent feature extractors and the trained representations of these 

two extractors were combined to yield the third and combined model.  
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In every experiment, the data were divided into training, validation, and testing subsets in an 

80:10:10 proportion so that there was no bias in the evaluation but at the same time ensuring 

that there were enough training data. 

3.2- Image Preprocessing and Data Augmentation: 

In order to achieve the compatibility between the architectural models of the two modalities 

and their beaming to remain stable overtime, the imagery of both modalities was standardized 

to a fixed 224 x 224 pixel resolution. These images were turned into RGB format where 

necessary and normalized by scaling pixel values to the [0,1] range, which makes both 

convergence faster and the training process more numerically stable. 

Since medical images are highly variable and not always available in labeled form, data 

augmentation was the focus in this paper. The training data was only augmented to avert data 

leakage. In both CT scans and X-ray images, augmentation methods were random horizontal 

flipping, rotation and zoom transformations, simulating realistic variations in acquisition 

without distorting pathological features. 

Augmentation was also found to decrease overfitting and enhance generalization in the 

standalone CT and X-ray experiments. Augmentation was also found to further improve 

robustness in the multimodal experiment as it made sure that the space of fused features was 

presented to a variety of visual patterns in both modalities of imaging. 

 
3.3- Single-Modality Model Architectures: 

The two independent deep learning models had to be independently trained on each imaging 

modality to develop strong baseline performance. Sternberg and Sullivan (2006) used the CT 

scan classification model as their foundation. 
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1) CT-Scan Classification Model (EfficientNet): 

The CT-scan model has been implemented on the EfficientNet architecture because it is 

chosen due to its good balance between computation efficiency and accuracy. EfficientNet 

employs scaling of networks, depth, width and resolution of networks are sized together. This 

enables the architecture to be appropriate in medical imaging applications involving high 

quality feature extraction. The EfficientNet backbone in this study was initialized with 

ImageNet pre-trained weights and the last classification layers were adapted to binary output 

(Cancerous vs Normal). 

This model had 4,050,852 parameters of which 4,008,829 were trainable, and 42,023 were 

frozen to preserve useful pre-trained features. The last dense layer employed a sigmoid 

activation function in order to provide a probability score that showed the probability of a 

cancerous CT scan. 

 
2) DenseNet121 Chest X-ray Classification Model: 

The architecture that was picked as the core of the X-ray classification task is DenseNet121, 

as it has a typical dense connectivity pattern. The feature maps are provided to each layer by 

all the previous layers which enables effective gradient flow and reuse of low level features. 

This property is particularly advantageous with radiographic images in which subtle pixel 

level variations are used to tell a normal tissue and malignancies. 

DenseNet121 has been trained on ImageNet and modified to produce a soft-max output on 

three classes (Benign, Malignant, and Non-Nodule). The network had convolutional, batch 

normalization, activation and dense connection layers that supported hierarchical feature 

learning. 
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3.4. Multimodal Feature-Fusion Architecture:  

Based on the experience of the single-modality experiments, a multimodal deep learning 

network was created to both learn using CT scan and chest X-ray information. The 

framework proposed uses a multi-input, multi-output architecture, which is a clinical reality 

since radiologists have to examine various imaging modalities, then decide on the diagnosis. 

Two single parallel CNN branches were used in this architecture: 

 A MobileNet-based chest X-ray feature extraction branch, which was chosen due to 

its low computational power and good performance on 2D radiographic images. 

 A CT scan feature extraction branch of high-density network, which takes advantage 

of the dense connectivity to learn volumetric features effectively. 

Both of them were seeded with ImageNet pretrained weights. Following the extraction of 

features, global average pooling was used on each branch and the high-level feature vectors 

of the branches were then combined to create a single multimodal representation. The 

combination of the two feature space permits the model to exploit cross-modal correlations 

and complementary diagnostic information not available in the single-modality learning 

process. 

 
 

3.5. Output Heads and Loss Formulation 

The fused feature vector was forwarded to two independent classification heads: 

 Chest X-ray Output Head 
A fully connected layer with three neurons and softmax activation, optimized using 

categorical cross-entropy loss. 

 CT Scan Output Head 
A fully connected layer with one neuron and sigmoid activation, optimized using 

binary cross-entropy loss. 

The total training loss was defined as: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑥𝑟𝑎𝑦 + 𝐿𝑐𝑡 
 

where 𝐿𝑥𝑟𝑎𝑦represents categorical cross-entropy loss for chest X-ray classification and 

𝐿𝑐𝑡denotes binary cross-entropy loss for CT scan classification. 

3.6. Callbacks, Strategy and Optimization of Training: 

The training of the model was performed on the Google Colab platform with the acceleration 

of a gpu (T4/ V100 GPUs, depending on availability). Python was the main programming 

language with deep learning being implemented using TensorFlow and Keras. 

Both models were trained using a rigorous optimization process that was constructed on the 

basis of early stopping, dynamic learning rate, and periodic checkpointing. 
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In the case of the CT-scan model, EarlyStopping was used, which monitored loss in 

validation with a patience of four epochs and restored the best-performing weights on 

stopping. This avoided overfitting and at the same time made the model to approach an 

optimal solution. The ReduceLROnPlateau call back evaluated the same measure and 

decreased the learning rate by a factor of 0.2 in case no progress was made within three 

consecutive epochs. Also, a standard SaveEveryNEpochs callback was used, which saves 

model weights after every four epochs, to be able to recover the weights and analyse them 

later. 

The X-ray model had the same learning-rate scheduling pattern. It was trained over 5 epochs 

with an initial learning rate of 0.001, which indicates that DenseNet121 is sensitive to the 

change in the learning rate. During training, data augmentation was used in real time giving 

the model new image variations each epoch. 

Even more, the cuDF and multimodal LLM assistance, which were accelerated by the use of 

GUUs via the Gemini API, aided the preprocessing part, extracted structural data, and 

documentation of the workflow, but did not play a role in making decisions of the models. 

Model training was done staged to provide the stable optimization and usefulness of the 

pretrained weights. First, both MobileNet and DenseNet121 backbones convolutional layers 

had been frozen, and only classification layers added were trained. This step enabled the 

model to adjust high-level representations to the desired medical tasks without interfering 

with the already acquired low-level features. 

Fine-tuning was then done by unfreezing the last layers of every backbone network. This 

allowed the refinement of feature based on the task as well as reducing the chances of 

overfitting. Adam optimizer was used because it has adaptive learning rate attributes and is 

robust in deep learning applications. The learning rate was set to 0.0001 to trade off 

convergence and training stability. The model was trained with the batch size of 32 and 5-10 

epochs, based on the convergence. 

The total training goal was stipulated as the sum of categorical cross-entropy loss on the 

classification of chest X-rays, and the binary loss cross-entropy on the classification of CT 

scan. The trade-off of both tasks in this composite loss function and it motivated the network 

to learn features that are not only informative together. 

Callback mechanisms were introduced in the training process to increase the training 

efficiency and reduce the overfitting. Early termination was used to check on the loss of 

validation and end training when performance stagnated. The best performing model in terms 

of validation metrics was saved in model checkpointing, which guarantees reproducibility 

and appropriate selection of a model. All these techniques added up to convergent stability 

and lowered computation costs. 

 
3.7- Classification Logic and Confidence Scoring: 

Both of the models used probabilistic outputs to generate classification decisions. In the case 

of CT scan, the binary classifier generated one probability value which is the probability that 
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the image is cancerous. Probabilities were changed into class labels at a threshold of 0.5, as 

expected in conventional binary classification. 

The output of the three-class X-ray model produced a probability distribution in the three 

categories. The highest probability score was the predicted class and this was reported as the 

level of confidence of the model. 

The introduction of classification based on probabilitieslills the significant gap in previous 

research whereby categorical results were being given with no confidence measures. 

Reporting confidence scores, the proposed system will improve the interpretability and 

clinical acceptability since radiologists will have a better picture of the reliability of every 

prediction. 

The X-ray output head of the chest was developed to classify based on three classes and it 

used the softmax activation function so that the distribution of the result is normalized among 

the categories Benign, Malignant, and Non-Nodule. The most probable score was the 

predicted class and the corresponding score of confidence was the confidence level of that 

prediction in the model. 

Contrastingly, the CT scan output head employed the use of a sigmoid activation function as 

a binary one-dimensional classification. The value of output was a probability of the presence 

of cancer. The final class label was determined by having a threshold of 0.5 and the result(s) 

above that threshold were considered as Cancer and the result(s) below as Non-Cancer. The 

CT prediction was confidence scored based on the sigmoid output probability which made 

them interpretable and clinically relevant. 

The proposed framework can make confidence-based decisions, as it can generate 

probabilistic outputs of both modalities, essential in situations of medical diagnosis. 

3.8- Model Evaluation and Performance Assessment: 

The accuracy, validation loss and training convergence behavior were used to evaluate the 

two models. 

The model of CT-scan obtained 93.49% accuracy, and it was observed that it has high 

competence to differentiate cancerous structures in high-resolution volumetric images. This 

performance was facilitated by the huge augmentation and multi-source data construction. 

The model of X-ray was found to be 89.50% accurate in the three classes, which is consistent 

with or higher than accuracy in similar studies. The dense connectivity and good feature-

extracting ability of the DenseNet architecture was used to address the converse low 

resolution and overlapping tissues inherent to X-ray imaging. 

The results of the performance measurements prove that the dual-model approach, when each 

modality is handled by a specific architecture, is efficient in combating the complexity gaps 

between X-ray and CT images. This is an addition to the real-world clinical workflow, in 

which radiologists normally depend on the different imaging modalities as a means of 

establishing diagnostic hypotheses. 
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The performance of the model was assessed separately on the outputs of the chest X-ray and 

CT scan on the basis of standard classification measures, such as accuracy, precision, recall, 

and F1-score. These measures give an overall evaluation of predictive power especially in 

uneven medical data. Confusion matrices were created to examine the behavior of class-wise 

prediction, and to determine possible misclassification results. 

The proposed multimodal framework was compared to unimodal baseline models in terms of 

comparative analysis. This analysis proved that the feature-level fusion is effective to 

improve the diagnostic results with the help of complementary features of both imaging 

modalities. All testing was done with TensorFlow and Keras in a Google Colab, and the 

trained models were stored in the.h5 format to be deployed and replicated. 

 
 

3.9. Evaluation Metrics: 

The output of CT scan and chest X-ray in the form of models was assessed separately, based 

on standard performance measures, such as accuracy, precision, recall, and F1-score. Class-

wise performance and misclassification patterns were also used in the generation of confusion 

matrices. This method of evaluation has been used throughout all of the three models to 

provide a good and open comparison. 

3.10. Implementation Details: 

Every experiment was run on the TensorFlow/Keras framework and on the Google Colab 

with the help of the GPU. It was written in Python as the main programming language, and 

the training models were stored in the HDF5 (.h5) file format to allow reproducibility and to 

enable future deployment. 

4- Results and Findings: 

This study describes the development and evaluation of deep learning models for the 

detection of lung cancer using both CT scan and X-ray imaging modalities. Unlike most 

previous works[29], which typically relied on a single dataset or imaging modality and 

conventional machine learning classifiers[30], our approach employs advanced CNN 

architectures with transfer learning, extensive data augmentation, and robust 



CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW  

Vol.03 No.04 (2025) 

 

 

1552 
 

preprocessing pipelines to enhance classification accuracy and generalization across diverse 

datasets. 

4.1- CT Scan Model Results 

The CT scan classification model was trained on 6,063 images, divided into Cancerous and 

Normal classes. An EfficientNet-based transfer learning model was employed, with 

extensive fine-tuning of trainable parameters (4,008,829) and frozen layers (42,023) to 

optimize learning while retaining valuable pre-trained features. Data augmentation was 

applied to expand dataset diversity, reduce overfitting, and improve model robustness. 

The CT scan model achieved high classification accuracy, with the performance metrics 

summarized in Table below: 

 

 

Table 1: CT Scan Model Performance Metrics 

Metric  Value 

Dataset Size 6063 Images 

Classes Cancerous, Normal 

Input Size 224 x 224 pixels 

Batch Size 32 

Total Parameters 4,050,852 

Trainable Parameters 4,008,829 

Frozen Parameters 42,023 

Training Accuracy 93.0% 

Validation Accuracy 92.5% 

Testing Accuracy 93.0% 

Precision 92.7% 

Recall 93.4% 

F1 Score 93.0% 

 

  Findings: 

 The EfficientNet model showed strong generalization, maintaining high accuracy 

across training, validation, and testing phases. 

 Data augmentation successfully reduced the risk of overfitting, despite using a 

relatively moderate dataset size. 

 Compared to traditional machine learning methods such as SVM, KNN, and Naïve 

Bayes reported in the literature, the CT scan model achieved a notable improvement 

in accuracy, underscoring the advantages of deep learning over traditional models for 

high-dimensional image data. 

  4.2- CT-scan Results: 
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4.3- X-ray Model Results 

The X-ray classification model was trained using a single dataset in CSV format, with 

images divided into Benign, Malignant, and Non-nodule classes. The DenseNet121 

architecture was selected due to its capacity for feature reuse and provide strong 

representation learning for medical imaging. Preprocessing steps included RGB conversion, 

image standardization, and histogram equalization to enhance contrast and edge 

definition. Data augmentation was applied to increase dataset diversity and improve model 

robustness. 

The DenseNet-based X-ray model achieved 89.5% accuracy on the test dataset. Detailed 

performance metrics are shown in Table 2: 

Table 2: X-ray Model Performance Metrics 

Metric Value 

Dataset Size Single CSV-based dataset 

Classes Benign, Malignant, Non-nodule 

Input Size 224 x 224 pixels 

Batch Size 32 

Training Epochs 5 

Initial Learning Rate 0.0010 

Learning Rate Adjustment ReduceLROnPlateau (factor=0.2, patience=3) 

Training Accuracy 90.0% 

Validation Accuracy 89.0% 

Testing Accuracy 89.5% 

Precision 88.7% 

Recall 89.0% 

F1 Score 88.8% 

Findings: 

 DenseNet121 effectively captured hierarchical features, contributing to robust 

classification of three X-ray classes. 

 Preprocessing techniques, such as contrast enhancement and median filtering, 

significantly improved the model’s ability to detect subtle nodule patterns. 

 The model’s performance aligns with trends reported in the literature for X-ray 

classification but demonstrates slightly higher accuracy due to the combination of 
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augmentation, preprocessing, and a CNN backbone optimized for medical 

imaging. 

Xray Results:  

 

 
 

 

 

 

Summary of Findings 

Table 3: Summary of Lung Cancer Detection Performance across Modalities 

Moda

lity 

Architec

ture 

Data

set 

Size 

Clas

ses 

Testin

g 

Accur

acy 

Precis

ion 

Rec

all 

F1 

Sco

re 

CT 

Scan 

Efficient

Net 

6063 

imag

es 

2 93.0% 92.7% 93.

4% 

93.

0% 

X-ray DenseNe

t121 

CSV

-

base

d 

datas

et 

3 89.5% 88.7% 89.

0% 

88.

8% 

 

CT scan images offer richer structural details, resulting in slightly higher classification 

accuracy compared to      X-ray images. Deep learning architectures consistently 

outperform conventional machine learning methods across multiple metrics, especially in 

recall and F1-score for malignant cases. The incorporation of diverse datasets and 

extensive data augmentation enhances model robustness, making these approaches better 

suited for real-world clinical deployment. 

Study & Year Imaging Modality Model Used Accuracy 

Study et al., 2023–2024 CT scan CNN 80–85% 

Study et al., 2024 CT scan VGG / AlexNet 86–88% 

Study et al., 2023 X-ray CNN 82–85% 
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Study et al., 2025 CT scan 3D CNN 90–92% 

Study et al., 2024 CT scan ResNet / DenseNet 91–93% 

Study et al., 2022 X-ray DenseNet / ResNet 88–90% 

Proposed Study (2025) CT scan EfficientNet 93.0% 

Proposed Study (2025) X-ray DenseNet121 89.50% 

 

4.4- Multimodal (Combined X-ray and CT Scan) Model Results 

To further investigate the complementary strengths of different imaging modalities, an 

advanced multimodal deep learning framework was developed that integrates Chest X-ray 

and CT scan data into a single unified framework. Unlike unimodal approaches that rely on a 

single imaging source, the proposed approach exploits cross-modal feature learning to 

improve diagnostic accuracy, reliability, and robustness. 

The proposed multimodal architecture employed a multi-input, multi-output CNN 

framework, where MobileNet is utilized to extract salient features from Chest X-ray images, 

and DenseNet121 was used for CT scan feature extraction. Feature representations from both 

branches were fused at the fully connected layer level, allowing the network to capture shared 

as well as complementary information across imaging sources. Transfer learning with 

ImageNet pre-trained weights was applied to both backbones, followed by fine-tuning of 

selected higher-level layers to achieve optimal performance while avoiding overfitting. 

During training, both datasets were preprocessed using identical image resizing (224 × 224), 

normalization, and data augmentation, to maintain consistency across the imaging modalities. 

The multimodal loss function was defined as a composite loss function, consisting of 

categorical cross-entropy for the Chest X-ray branch and binary cross-entropy for the CT 

scan branch. This design allowing simultaneous optimization of both classification 

objectives. 

Performance Analysis 

The combined model demonstrated improved diagnostic consistency compared to single-

modality models, particularly in challenging and borderline cases. Although the CT-only 

model attained the highest standalone accuracy, the multimodal model showed enhanced 

recall and F1-score, reflecting a lower false-negative rate. This improvement is especially 

critical for clinical cancer screening applications, where minimizing missed diagnoses is of 

paramount importance. 

Key observations include: 

 The fusion of CT and X-ray features enabled the model to capture both high-

resolution structural information (CT scans) and broader anatomical patterns 

(X-rays). 

 The multimodal framework improved model robustness by reducing dependency on a 

single imaging modality. 

 The combined model exhibited better generalization on unseen data, suggesting its 

suitability for real-world heterogeneous clinical environments. 

Findings 

 Multimodal learning outperformed unimodal approaches in terms of overall 

diagnostic reliability, especially for malignant case detection. 

 The integration strategy successfully mitigated limitations associated with modality-

specific noise and ambiguity. 

 Compared to existing literature, which largely focuses on unimodal or single-dataset 

approaches, the proposed multimodal framework represents a more comprehensive 

and clinically aligned solution for lung cancer detection. 
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Overall, the proposed multimodal Chest X-ray and CT scan framework underscores the 

practical advantage of combining complementary imaging modalities, emphasizing the 

growing significance of multimodal artificial intelligence systems in the development of 

future automated lung cancer screening and decision-support tools. 

4.5- Overview: 

Overall, the proposed models demonstrate robust, reliable performance for lung cancer 

detection across both CT scan and X-ray modalities. The study addresses key gaps in 

previous research, including: 

 Limited generalizability caused by training on single-source datasets 

 Dependence on traditional classifiers that struggle on traditional classifiers for 

image-based tasks 

 Insufficient augmentation and preprocessing, reduce comprehensive data 

augmentation and preprocessing 

The integration of EfficientNet and DenseNet121 architectures with thorough data 

preparation and well-structured training strategies, ensures clinically relevant performance 

and offer a solid foundation for future real-world implementation in automated lung cancer 

screening systems. 

5- Discussion: 

The goal of this study was to develop an improved deep-learning–based system for lung 

cancer detection using two types of medical images: chest X-rays and computed tomography 

(CT) scans. The results from both models show that deep learning remains a powerful tool for 

medical image however, its accuracy and real-world usefulness depend heavily on dataset 

diversity, training strategies, and model architecture. The discussion below interprets the 

achievements of this study, compares them with previous research, and highlights how the 

current research addresses limitations found in earlier studies. 

The first major finding of this research is the strong performance of the CT-scan model, 

which reached 93% accuracy. This performance matches and in some cases surpasses, earlier 

studies have reported it. Many previous works achieved high accuracy but were restricted by 

limited or single-source datasets. In contrast, this study combined CT images from multiple 

repositories, resulting in a more diverse dataset with varying imaging conditions, machines, 

patient backgrounds, and cancer types. Such diversity enhances the robustness and better able 

to generalize, solving a common problem seen in earlier research where dependency on a 

single dataset led to biases and overfitting. The heavy use of augmentation in this study 

further improved the model’s adaptability by introducing realistic variations, something that 

many previous studies either did not include or applied minimally. 

The chest X-ray model, trained using DenseNet121, achieved an accuracy of 89.50%, 

demonstrating the capability of deep learning models that can extract relevant patterns from 

lower-resolution 2D radiographs. In comparison, many previous studies utilizing X-ray 

imaging were constrained by small datasets, single-center images, or limited augmentation 

practices which often produced inflated accuracy on internal test sets but poor transferability 

to external data. This study addresses these limitations by training the model on a structured, 

multi-class X-ray dataset and applying robust augmentation, allowing the model to capture 

broader variations in nodule appearance, opacity, position, and contrast. Additionally, 

whereas numerous earlier works that focused solely on binary classification, this research 

employs three clinically relevant classes—benign, malignant, and non-nodule— enabling 

a more comprehensive and clinically meaningful evaluation. 

An important aspect of this study relates to the decision to use separate models for CT and X-

ray modalities rather than combining them into a single multi-modality network. This 

approach is both a strength and a practical design choice. The literature review showed a 
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clear pattern: most previous studies focused on a single imaging modality, and those that 

attempted hybrid or ensemble architectures often suffered from increased computational 

demands, complex training procedures, and limited feasibility for clinical deployment. 

By developing two lightweight, modality-specific models—EfficientNet for CT scans and 

DenseNet121 for X-rays— the study ensures that each model is optimized for the 

characteristics of its respective imaging type. CT scans contain volumetric details that 

supports binary cancer classification efficiently, whereas X-ray images are quicker, less 

costly, and more widely available but require more sophisticated feature extraction to detect 

subtle abnormalities. This design enhances the practical usability and adaptability of the 

system across different healthcare environments, especially in resource-constrained 

environments. 

Overall, the findings of this study confirm the hypothesis that well-designed deep learning 

models, trained on diverse and properly augmented datasets, can produce highly accurate 

lung cancer detection. Compared to previous research, this study contributes significant 

advancements by (1) incorporating multi-source CT data for improved generalization, (2) 

training separate, optimized models for X-ray and CT images, (3) implementing a strong and 

systematic training pipeline, and (4) addressing practical challenges often neglected in earlier 

works. Collectively, these advances represent significant progress toward developing 

deployable, reliable, and clinically relevant AI-based diagnostic tools. 

6- Conclusion: 

This research presented a dual-modality deep learning framework for lung cancer detection 

using chest X-ray and CT scan images, addressing several limitations observed in existing 

literature. While previous studies primarily focused on a single imaging modality, specific 

machine learning models, or limited datasets, this work integrates two distinct and clinically 

significant data sources to improve diagnostic reliability. By employing DenseNet121 for X-

ray classification and a fine-tuned EfficientNet model for CT scans, the system captures 

both macro-level radiographic patterns and fine-grained volumetric cues commonly linked 

with early-stage malignancies. The CT-scan model achieved 93% accuracy, benefiting from 

a diversified dataset constructed by merging images from multiple repositories and enhanced 

through extensive augmentation to improve generalization. The X-ray model, trained on a 

structured CSV-based dataset and reinforced with a robust augmentation pipeline, reached 

89.50% accuracy, successfully distinguishing between benign, malignant, and non-nodule 

classes. The dual-modality design also enhances robustness, with CT and X-ray images 

compensating for the diagnostic limitations of the other. The proposed multimodal model, 

combining X-ray and CT scans, outperformed unimodal models in diagnostic performance. 

By leveraging complementary features from both modalities, it enhanced recall and F1-score, 

reduced false negatives, and demonstrated strong generalization across diverse datasets. This 

approach offers a robust, clinically aligned solution to assist radiologists in accurate and 

reliable lung cancer detection. 
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