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INTRODUCTION

Abstract

In this paper, we introduce a privacy-conscious federated learning
(FL) system that builds upon a blockchain-based coordination
layer to offer provable provenance and incentive alignment
without revealing the underlying data. The stacking of differential
privacy (DP), secure aggregation (SA), and smart contracts,
which handle registration, commitreveal logging, challenges and
payouts, are stacked. We test the methodology and apply it to
image (CIFAR-10, FEMNIST), text (sentiment), and tabular tasks
with non-IID partitions and adversarial setting. Relative to plain
FL, the full stack lags behind by approximately 1.5- 2.0 accuracy
points on the average, most of the loss to DP and not the ledger.
DP obtains £=6.3 ( 10-5) and reduces membership-inference AUC
significantly, whereas robust aggregation combined with DP and
SA decreases backdoor success by 62 to 5.8 at 20 percent
malicious clients. Consensus based on permissioned BFT makes
this difference of an additional ca. 0.35 s/round; on public PoS
networks, Layer-2 anchoring and micro-batching reduces
confirmation latency by an order of magnitude with insignificant
utility cost.

The Al systems that consume data have long
been dependent on the concept of centralized
data collection, which does not align with the
increasing privacy regulations, organizational
data-governance policies, and consumer demands
of privacy. To alleviate such tensions, federated
learning (FL) was created, whereby models are
trained on decentralized data silos, and only

model updates (e.g., gradients or parameters) are
exchanged, thereby minimizing the exposure of
raw-data and data cross-boundaries (Ning et al.,
2024; Zhu et al., 2023). However, practice has
shown that FL is not a panacea: model updates
may continue to leak sensitive information,
allowing inference or reconstruction attacks, and
operational problems, including unverifiable
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coordination, weak audit trails, and misaligned
incentives are still obstacles to collaborating
trustfully at scale (Ren et al., 2024; He et al.,
2024; Bai et al., 2025).

To begin with, privacy leakage remains in FL
due to the potential ability of membership or
attribute information regarding the confidential
data of clients in their gradients and weights.
Second, the levels of trust and traceability are
restricted: common FL processes rely on a
central coordinator the actions of which (e.g.
select a client, accept an update) cannot be
transparently ~ audited. = Third,  incentive
misalignment does not encourage good-quality
participation, especially with cross-organization
or cross-jurisdiction cooperation when the
contribution is different, and it is free-rideable
(Zhu et al., 2023; VFChain: Peng et al., 2022;
DFL: 2023).

We suggest a federated learning system based on
blockchain with a permissioned blockchain layer
and privacy-related control. Smart contracts also
offer verifiable coordination (round tracking,
client registration, and dispute resolution), on-
chain auditability of update commitments, and
tokenized incentives, and model updates are
ensured by differential privacy and secure
aggregation (Ning et al., 2024; Ren et al., 2024;
Peng et al., 2022).

We have an honest-but-inquisitive aggregator (or
committee) on off-chain, non-colluding majority
of clients, authenticated communication and
finite resource requirements (e.g. limited
bandwidth and non-uniform devices). The
blockchain is configured to be throughput
balanced, governed, and confidential; raw data
are never exited of local silos (Peng et al., 2022;
Ning et al., 2024).

This article issues the constant privacy leak in
FL, inability to have verifiable coordination and
traceability, and the misalignment of incentives
in a multi-party environment (Zhu et al., 2023;
Ning et al., 2024). We want to come up with a
blockchain-supported FL framework, which (i)
maintains privacy through the use of differential
privacy and secure aggregation, (ii) provides
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verifiable and auditable rounds with smart
contracts and  (iii) incentivizes  honest
contribution. The area addresses the cross-silo
FL in the conditions of honest-but-curious and
partially  adversarial  threats, where the
deployment of blockchains and permitted
resource constraints are practiced. It is important
as it offers quantifiable privacy-utility trade-offs,
open-governance and economically feasible
partnership in privacy-sensitive Al in regulated
settings (Ren et al., 2024; Peng et al., 2022; Bai
et al., 2025). Section 2 discusses FL privacy
threats and FL with blockchain. The architecture,
smart contracts and privacy controls are outlined
in section 3. Section 4 provides the findings of
model utility, privacy/attack resistance, and on-
chain overhead. Section 5 talks about trade-offs,
limitations and ethics. The conclusion of Section
6 deals with future directions.

Literature Review

Federated learning (FL) allows several clients to
jointly train a global model, but retains raw data
on the clients. Canonical clientserver FL
switches between local training on the device and
server combination of model updates (e.g.
FedAvg), eliminating the risk of central data
collection at the cost of heterogeneity and system
limitations (Kairouz et al., 2021). Practically,
data are never distributed identically among
clients (non-1ID), and this causes client drift,
slower convergence, and decreased accuracy;
recent surveys list mitigation methods which
include proximal terms, control variates and
adaptive aggregation (Guendouzi et al., 2023; Qi
et al., 2023). The primary bottleneck is
communication: uplink bandwidth is limited,
devices are intermittent and stragglers increase
the round time and on-device computation
budget and energy constraints limit the local
batch size and local epoch. Therefore, FL
algorithm design is a trade-off or strike between
statistical efficiency (non-IID data),
communication efficiency (compression, partial
participation) and on-device computation
(lightweight models/training). In order to boost
the number of users on their platforms, they
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ought to carry out advertising
campaigns.<lhuman[>They  should conduct
advertising campaigns in order to increase the
number of users on their platforms.

Despite FL storing data on the edge, the
inversion and inference attacks can result in
leakage of sensitive information. Differential
privacy (DP) is commonly used to formalize
privacy loss using parameters, which are called:
\varepsilonand \delta, which are applied at the
client/central (global) level with gradient
clipping and calibrated noise (Kairouz et al.,
2021). When scaled, secure aggregation (SA)
means that the server can only view aggregate of
client updates, not individual updates; but SA
does not measure the amount of privacy lost in
the aggregate. Formal analysis demonstrates that
even with a leakage, model/gradient statistics and
the size of participation can be relied upon and
integrating SA and DP can give quantifiable
guarantees (Elkordy et al., 2023). Contemporary
SA protocols solve the problem of malicious
clients, dropouts, and scalability, with
lightweight masking, cryptographic primitives,
or TEEs; maliciously secure protocols and
protocols that optimize communication have
been developed (Rathee et al., 2023).
Homomorphic encryption (HE) and secure multi-
party computation (SMPC) are cryptographically
more secure and cost more to compute, although
they can be used to compute aggregation over
ciphertexts and make use of client-specific keys;
FL using HE provides stronger confidentiality at
the cost of reduced performance (Park & Lim,
2022). The utility, latency, and cost trade-offs
between local vs. central DP, SA, HE, and
SMPC have subtle trade-offs (Elkordy et al.,
2023; Rathee et al., 2023; Park and Lim, 2022).
Blockchains offer logs of tampering and
coordinating programmable through smart
contracts. Public chains (permissionless) are
more friendly to open participation and economic
security, but have higher latency/fees, whereas
permissioned (consortium) chains are less
friendly to writers and can achieve lower
latency/finality ~with BFT-style consensus.
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Consensus choice defines throughput and cost:
Proof-of-Stake (PoS) is the most energy-efficient
and can be probabilistically finalized; Practical
Byzantine Fault Tolerance (PBFT) and its
variants provide faster finality at the cost of
O(n2)communication, constraining scalability;
RAFT (crash-fault tolerant) can be used in the
private case but does not have Byzantine
resilience (Oyinloye et al., 2021; Chacko et al.,
202 Surveys highlight the trade-offs that are
inherent in security, decentralisation, and
scalability, to make a choice towards data-
intensive  applications where latency and
gas/transaction costs matter (Oyinloye et al.,
2021; Chacko et al., 2024).

Combining blockchain and FL aims at
auditability, orchestration/aggregation
decentralization, and incentive alignment.

According to surveys, blockchain is capable of
(i) permanently recording training interactions
and model hashes to be verifiably provenance;
(i1) decentralizing or sharding aggregation (e.g.
committee-based or smart-contract mediated);
and  (ii1) encoding incentive/reputation
mechanisms  to  encourage  high-quality
participation and detect/free-ride behaviors (Qu
et al., 2022; Issa et al., 2022/2023; Liu et al.,

2024). Concrete systems exhibit verifiable
updates and auditing that can not be tampered
with such as VFChain records model

commitments and verification artifacts on-chain
and so can produce verifiable and auditable FL
(Peng et al.,, 2022). The incentive schemes
include auctions, token reward, trust/reputation
scoring and incentive scheme designs have been
designed to be fair and reliable (Ahmed et al.,
2023). Newer surveys are dedicated to
blockchain-based FL, synthesize architectures
and application patterns, but also observe the
performance bottlenecks of on-chain execution,
throughput, and model sizes (Liu et al., 2024;
Wu et al., 2023; Qu et al., 2022).

To begin with, quantifiable privacy: in addition
to SA, task-level privacy accounting with non-
IID dynamics is required, such as practical DP
budgeting in terms of both, in addition to SA,
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with HE, and compositional impact (Elkordy et
al., 2023). Second, incentive robustness: token
and auction mechanisms should withstand
sybil/coalitions attacks, contribution gaming, and
non-stationary data quality, and the contribution
measures should be verifiable, and slashing
policy or escrow (Ahmed et al., 2023; Qu et al.,
2022). Third, cost/latency overheads: smart-
contract orchestration, consensus latency, and
fees might take the FL critical path;
lightweight/permissioned consensus and off-
chain rollups or commit-reveal patterns should
be considered (Chacko et al., 2024). Lastly,
scalability: it is possible that sharded committees,
hierarchical aggregation, hierarchical
committees, and hybrid cryptography, as well as
lightweight cryptography (SA and lightweight
HE), can help lower the per-round cost without
losing  verifiability; formal  end-to-end
benchmarks, including privacy, accuracy, gas,
and wall-clock, are limited (Kairouz et al., 2021;
Wu et al., 2023; Tang et al., 2025).

METHODOLOGY

3.1 Threat Model

The study assumes an honest-but-curious
coordinator that correctly executes the training
protocol but attempts to infer sensitive
information from model updates and metadata.
Clients (data owners) may be (a) honest, (b)
curious—probing gradients and committing
malformed updates to glean information or (c)
malicious, attempting data/model poisoning,
backdoor insertion, or free-riding (sending stale
or random updates for rewards). We also
consider Sybil adversaries that instantiate many
pseudo-clients to skew aggregation or capture
incentives. Within the blockchain layer, on-
chain adversaries may front-run transactions,
replay commitments, or challenge rounds to
disrupt liveness. Network attackers can observe
traffic but cannot break standard cryptography.
We do not assume access to raw client data by
any party. The goal is to preserve privacy against
inference attacks, ensure integrity of aggregation
and payouts in the presence of byzantine
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behavior, and maintain acceptable utility and
systems performance.

3.2 System Architecture

The system couples a conventional synchronous
FL loop with a permissioned or public
blockchain used for verifiable coordination and
incentives.

Clients (edge nodes / institutions). Each client
holds a private dataset D;. During round ¢, it
downloads the current global model w;, performs
Elocal epochs, and computes an update Af.
Before transmission, the client applies gradient
clipping and optional local DP noise, then
participates in a secure aggregation (SA)
protocol to mask Af.

Aggregator  (coordinator). A  logically
centralized, potentially replicated service collects
masked updates, runs SA to obtain Zizg, and

updates the global weights w;, ;. The aggregator
does not need to trust individual clients: model
update commitments and round metadata are
anchored on-chain.

Blockchain layer. A set of smart contracts
manages (i) client registration and staking, (ii)
per-round commit-reveal of update hashes, (iii)
round finalization with publicly verifiable event
logs, (iv) challenge procedures when
misbehavior is alleged (e.g., mismatched hash
slash), and (v) payout or reputation updates
based on participation proofs. To bound on-chain
costs, only hashes and receipts are written on-
chain; bulky artifacts (e.g., model checkpoints)
are stored off-chain (object store or IPFS) with
content-addressed identifiers recorded in events.
3.3 Federated Learning Configuration

Client sampling: In each round, select mout of
Nclients  uniformly at random (default
participation m/N € [0.1,0.3]). Local training:
E € {1,5}epochs per round; batch size B €
{16,64}; learning rate ntuned per dataset with
cosine decay. Aggregation: Weighted by local
sample counts n;. For robustness ablations, we
evaluate median and trimmed mean aggregators
under poisoning. Non-IID partitioning: We
emulate realistic heterogeneity using label-skew
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(Dirichlet « € {0.1,0.5}), quantity-skew, and
feature-shift splits. Fault tolerance: Stragglers are
tolerated via a deadline per round; late updates
roll to the next round. Dropout-resilient SA
ensures masking keys survive  partial
participation.

3.5 Privacy Mechanisms

Gradient clipping & central DP. Each client clips
gradients to £,norm C. The aggregator applies
Gaussian noise N (0,02C?I)to the aggregated
update. A moments accountant tracks per-round
privacy loss and produces a dataset-level
(g,6)after Trounds given sampling rate q =
m/Nand noise multiplier . Target regimes: € €
[2,8]at § = 10~ >for moderate sampling.

Secure aggregation. We implement an additively
masked SA protocol with pairwise one-time pads
derived via Diffie—Hellman, plus dropout
recovery  (mask-cancellation  shares). The
coordinator sees only the sum of masked updates;
if fewer than a threshold of clients complete, the
round is aborted and stakes are returned. Privacy
auditing. We execute membership-inference and
gradient-inversion  attacks against trained
checkpoints to empirically validate that measured
ecorrelates with attack success reduction.

3.5 Blockchain Design

Permissioned consortium chain. PBFT-style
consensus (or Raft for crash-fault tolerance
where byzantine risks are lower) achieves low
latency (<1 s block times) and deterministic
finality, suitable for enterprise FL (e.g.,
hospitals). Identity is managed by a certificate
authority; gas is not priced for profit but used for
rate limiting and accountability. Public EVM
network or testnet. Proof-of-Stake underpins
liveness and decentralization but introduces
variable fees and confirmation delays. We
mitigate by batching events and using a commit-
reveal pattern to reduce on-chain writes.

Smart contracts expose:

registerClient(pubkey, stake): admits clients and
escrows stake. openRound(t, paramsHash):
signals a new round with  hashed
hyperparameters. commitUpdate(t, updateHash,
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qualityProof?): records a client’s commitment
and optional zero-knowledge proof of bounded
norm to deter outliers. finalizeRound(t, aggHash,
ipfsCid): posts aggregate commitment and off-
chain pointer. challengeCommit(t, clientld,
evidence): enables dispute resolution (e.g.,
revealed mismatch); successful challenges slash
misbehaving parties. payout(t): distributes
rewards proportional to a contribution score (see

below).
Tokenomics/incentives. To discourage free-
riding and low-quality contributions, each

committed update receives a score computed off-
chain from Shapley-inspired proxy metrics (e.g.,
gradient similarity to the aggregate, loss
reduction on a small public validation set, and
norm bounds). Scores are normalized within a
round; payout multiplies the round reward pool
by these weights. Stakes can be slashed on
proven misbehavior or repeated low-quality
contributions.

Cost reduction techniques. We compress on-
chain data using event logs instead of state
writes, batch commits, and allow micro-rounds
to finalize multiple FL steps per block in
permissioned settings. For public chains, we
evaluate L2 rollups by anchoring periodic
checksums on L1.

3.6 Implementation Details

Software stack. Training uses PyTorch with a
lightweight FL framework (e.g., Flower or
FedML) to orchestrate rounds and client
sampling. Differential privacy is implemented
with  Opacus-style DP-SGD  (per-sample
gradients, clipping, Gaussian noise) and a
moments accountant. Secure aggregation is
written in Python/C++ with gRPC transport,
using elliptic-curve Diffie—Hellman for mask
seeds and AES-CTR for stream masks. Robust
aggregators are implemented on the coordinator.
Blockchain & contracts. For permissioned
mode, we deploy a BFT network with 4-7
validators using Dockerized nodes; for
public’EVM mode, contracts are authored in
Solidity, tested with Hardhat, and deployed to a
local testnet for repeatability. Contracts avoid
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loops over unbounded arrays; we favor events
over storage writes and store only fixed-size
hashes (Keccak-256). Off-chain artifacts are kept
in IPFS or a versioned object store (e.g., MinlO)
with integrity verified by content ID.

Telemetry. A centralized collector records
timestamps at key boundaries (download, local
train start/end, commit, finalize), network byte
counters, and chain receipts (tx hash, gas used,
block number). We export all metrics as JSONL
and archive configs and random seeds alongside
model checkpoints. Each experiment is wrapped
by a reproducibility script that reconstructs the
environment (container images, dependency
lockfiles) and publishes a manifest of parameters
and resulting hashes.

Hyperparameters. We use Bayes or grid search
on a public validation set for n, E, and DP noise
o, constrained to a small budget to mirror
realistic tuning; importantly, privacy noise is not
tuned against the private test set. For poisoning
studies, the attack parameters are fixed a priori
and disclosed.

Security engineering. Staking keys and SA key
material are generated per run; we rotate keys
across rounds where feasible. Contracts are linted
and checked against re-entrancy and underflow.
Off-chain signers authenticate finalizeRound
calls; challenge windows are set to exceed
network delays.

3.7 Statistical Analysis

All reported metrics are averaged over at least
three independent runs with different random
seeds. We report mean + standard deviation and
95% confidence intervals via nonparametric
bootstrap where distributional assumptions are
unclear. For between-method comparisons (e.g.,

RESULTS
4.1 Model Utility and Convergence
Table 1. Final utility
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Plain FL vs. DP+SA+BC), we use two-sided
paired t-tests when normality is plausible;
otherwise, Wilcoxon signed-rank tests. When
multiple hypotheses are tested across datasets
and metrics, we control the false discovery rate
with Benjamini—-Hochberg. We also report
standardized effect sizes (Cohen’s dor Cliff’s §)
to convey practical significance.

For convergence, we compare (a) rounds-to-
target accuracy and (b) AULC, analyzing
differences with survival-style curves (time-to-
threshold) and log-rank tests when appropriate.
Privacy-utility trade-offs are visualized by
plotting final accuracy against measured eat
varying o; we fit simple Pareto frontiers and
report the dominated hypervolume to quantify
improvements. Systems  overheads  are
decomposed with ANOVA over factors
(consensus type, block time, participation rate)
and interactions; where heteroskedasticity
appears, we apply HC3 robust standard errors.
For poisoning, we compute backdoor success
rates with binomial confidence intervals and
compare via proportion tests.

Finally, we pre-register the analysis plan, publish
all scripts and raw logs, and include ablation
summaries that isolate the marginal effect of
each component (DP, SA, blockchain,
incentives). This combination of rigorous
telemetry, principled statistics, and open artifacts
enables reproducible, end-to-end assessment of
whether blockchain-backed federated learning
can preserve privacy while maintaining model
performance and acceptable operational costs.

by dataset and method.

Metrics: CIFAR-10 & FEMNIST = Accuracy (%), Sentiment = F1 (%), Tabular = AUC (%). “Avg.” is

an unweighted mean across the four tasks.

Method CIFAR-10
Acc 1

FEMNIST
Acc?

Sentiment F1 | Tabular Avg.
1 AUCT 1
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Centralized (upper bound) | 86.7 92.4 92.1 88.3 89.9
Plain FL 85.9 90.3 91.5 87.2 88.7
FL + DP (central DP) 84.2 89.1 90.4 86.0 87.4
FL + Blockchain (no DP) 85.6 90.1 91.3 87.0 88.5
Full (FL + DP + SA + | 84.0 88.9 90.1 85.8 87.2
Blockchain)

Table 2. Convergence (rounds to within 1% of centralized performance; lower is better).
Method CIFAR-10 | | FEMNIST | | Sentiment | | Tabular | | Avg. |

Plain FL 95 72 60 44 68

FL +DP 115 89 73 56 83

FL + Blockchain (no DP) | 100 76 63 47 72

Full (DP + SA + BC) 125 95 78 61 90

Takeaways. Across tasks, the Full system trails
centralized by ~2.7 points on average but
remains within 1.5 points of plain FL.
Blockchain orchestration alone has a negligible
effect on utility (<0.3 points), while DP explains
4.2 Privacy and Attack Resistance

Table 3. Privacy and attack metrics (final training checkpoint).
DP targets used: § = 107°; sampling q =~ 0.2; rounds T = 200. MI-AUC: membership-inference AUC
(| is better).

most of the gap. Convergence slows modestly
with DP and again with SA-+on-chain
coordination due to batching and commit
windows (Tables 2, 5).

Method ¢ (global | MI-AUC MI-AUC MI-AUC MI-AUC Avg.

DP) | CIFAR-10 | | FEMNIST | | Sentiment | | Tabular | | MI-
AUC |

Centralized — 0.74 0.71 0.68 0.70 0.71

Plain FL — 0.70 0.68 0.66 0.67 0.68

FL + DP 6.3 0.56 0.54 0.52 0.55 0.54

FL + |- 0.69 0.67 0.65 0.66 0.67

Blockchain (no

DP)

Full (DP + SA | 6.3 0.54 0.53 0.51 0.53 0.53

+ BC)

Takeaways. DP (with clipping) reduces MI- 4.3 Overhead Analysis (Latency,

AUC by ~0.14 versus plain FL. Adding secure
aggregation + blockchain slightly improves MI-
AUC (0.54 — 0.53 on average), attributable to
stricter norm proofs and reduced per-client
observability—even though ¢ is unchanged (DP
dominates formal privacy).

Communication, On-Chain)

We report per-round medians over three runs.
“PBFT” denotes a permissioned consortium
network; “PoS (EVM)” denotes a public PoS
chain with batched commits (one Merkle
commitment + finalize + payout per round).

Table 4. Per-round latency breakdown (seconds; lower is better).

Dataset Local Comm On-Chain Total On-Chain Total
Train (net) (PBFT) (PBFT) (PoS) (PoS)
CIFAR-10 | 1.80 0.28 0.35 2.43 6.50 8.58
FEMNIST | 1.20 0.22 0.34 1.76 6.45 7.87
Sentiment | 0.90 0.20 0.34 1.44 6.40 7.50

973




CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

CONTEMPORARY
JOURNAL OF SUCIAL
SUIENCE REVIEW

Vol.03 No.04 (2025)

CJSSR

| Tabular | 0.40 1 0.18 1 0.33 | 0.91 | 6.38 | 6.96 |

Table S. Blockchain activity and communication per round.

Setting Tx /| Gas / round | Finality Bytes / | Clients / round
round (batched) (s) client 7 (m)

PBFT 3 n/a 0.30-0.50 | 1.2-1.6 MB | 100

(permissioned)

PoS (EVM) 3 270,000 6.0-7.0 1.2-1.6 MB | 100

Energy proxy. Average client-side energy per  batching and micro-rounds (Table 8) are

round (from power logs / model) was 12.1 J
(CIFAR-10), 83 J (FEMNIST), 6.7 J
(Sentiment), and 3.1 J (Tabular); on-chain
energy is not attributed to clients and is excluded.
Takeaways. In PBFT, on-chain orchestration
adds ~0.33-0.35 s to each round (=20-35%

necessary to keep throughput usable on public
networks.

4.4 Robustness to Dropouts and Poisoning
Table 6. Robustness under adversaries (20%
malicious clients).
Backdoor success rate measured on CIFAR-10;

overhead depending on task). In PoS,  “Utility” is test accuracy (%). Robust aggregator
confirmation latency dominates round time; = trimmed mean (0.2).

Method Robust Aggregator | DP/SA | Backdoor Success | | Utility 1

Plain FL No No 62.4% 85.9

Plain FL Yes No 14.7% 85.1

FL + Blockchain Yes No 13.9% 85.0

FL + DP Yes DP only | 9.6% 84.2

Full (DP + SA + BC) | Yes DP + SA | 5.8% 84.0

Dropouts. With 30% client dropouts, secure = from outliers and preventing per-client
aggregation with dropout recovery maintained  inspection.

successful rounds in >98% of attempts; without
recovery, completion fell to 83% (not shown).

Takeaways. Robust aggregation is essential
under poisoning; DP + SA further depresses
backdoor success by limiting the effective signal

4.5 Cost and Scalability

Throughput is reported in completed rounds per
hour for a fixed wall-clock budget and 100
participating clients unless otherwise noted.
“Micro-batching (k=5)" finalizes 5 FL steps per
block (PBFT) or per L2 batch (PoS).

Table 7. Throughput vs. number of total clients (N) and participation rate (m/N).

N (total) m/N PBFT Rounds/h 1 PoS Rounds/h 1

50 0.30 980 380

100 0.20 720 260

500 0.10 210 72

Table 8. Effect of micro-batching and L2 anchoring (CIFAR-10; PoS).

Setting On-Chain Tx / round | Gas / round | Rounds/h | Acc
Latency | ! ! 1 (%)

Baseline (L1, no batching) | 6.50 s 3 270k 260 84.0

L2 rollup anchor (no|2.10s 3 40k 520 84.0

batching)

L2 + micro-batching (k=5) | 0.65 s 1 12k 910 83.9

Takeaways. On public networks, L2 anchoring and micro-batching are decisive, cutting on-chain
latency ~10x and gas ~20x while preserving accuracy.

4.6 Ablations and Sensitivity

974



CONTEMPORARY
JOURNAL OF SUCIAL
SUIENCE REVIEW

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW
Vol.03 No.04 (2025)

We ablate components on CIFAR-10 to quantify their marginal effects.

Table 9. Ablation study (CIFAR-10).

Configuration DP ¢ (0=1e-5) | MI-AUC | Acc (%) | Rounds to 1% | On-Chain (PBFT)
! ! 1 ! s

Plain FL — 0.70 85.9 95 —

+ Blockchain only — 0.69 85.6 100 0.35

+ DP only 6.3 0.56 84.2 115 -

+ DP + SA 6.3 0.55 84.1 119 -

Full (DP + SA + 6.3 0.54 84.0 125 0.35

BC)

Table 10. DP sensitivity (CIFAR-10; PBFT).

Noise multiplier atuned with fixed clipping C; larger glowers ¢ and utility.

o €] Acc (%) 1 MI-AUC |

0.8 8.1 84.9 0.58

1.0 7.0 84.5 0.56

1.2 (default) 6.3 84.0 0.54

1.5 5.1 83.2 0.52

Table 11. Participation sensitivity (CIFAR-10; PBFT).

m/N Acc (%) 1 gl Rounds to 1% |

0.10 83.6 5.7 138

0.20 (default) 84.0 6.3 125

0.30 84.2 7.1 116

Takeaways. Most of the accuracy cost comes from DP noise; SA is nearly neutral for utility but
improves adversarial resilience. Participation increases convergence speed but raises ¢ via stronger

composition.

DISCUSSION

We find that a decentralized blockchain addition
in federated learning (FL) does not adhere to any
specific pattern in terms of model quality: the
accuracy loss between Full (DP + SA +
Blockchain) and plain FL can be considered as a
result of the different privacy measure (DP)
rather than an on-chain orchestration. In
permissioned systems, the additional latency of
consensus and contract calls, which is
approximately 0.35 s / round, is relatively small
when compared to the latency of local training;
in public Proof-of-Stake (PoS) systems, the most
significant bottleneck is now the confirmation
latency, unless it can be reduced by L2 anchoring
and micro-batching. The presence of strong
aggregation together with DP and secure
aggregation (SA) means that the backdoor
success is significantly minimized at a low utility

cost evidence of the fact that cryptographic
protection and incentive-compatible coordination
can  simultaneously  achieve  competitive
performance.

These findings are consistent with the syntheses
conducted in the past, demonstrating that the
primary practical tensions in FL are non-IID
information, communication boundaries, and the
privacy-utility decision (Kairouz et al., 2021).
The formal studies of SA help to understand that
avoiding per-client inspection does not in itself
commit leakage; quantifiable guarantees need DP
over SA, which is in line with our MlI-attack
reductions at 6.3-eps (Elkordy et al., 2023). On
adversaries, our benefit of strong aggregation and
disguised updates is reflected with the current
malicious-secure SA  protocols maintaining
efficiency and allowing byzantine clients (Rathee
et al., 2023).
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Systems-wise, the ledger selection is an issue of
concern. Authorized BFT-based consensus
provides rapid finality and consistent overheads
when wused in enterprise cooperatives, and
unauthorized PoS networks are transparent but
expensive in terms of latency and charges.
Modern surveys point to the ability of
lightweight consensus and execution paths (e.g.,
committee-based BFT, L2 rollups) to reduce this
gap, exactly what our experiments of micro-
batching and L2 anchoring take advantage of
(Chacko et al., 2025). In addition to coordination,
blockchain brings auditability and programmable
incentives and our payout mechanism and
commit-reveal logging are inspired by the focus
on provenance, reputation, and anti-free-riding
design in FL-chain hybrids (Qu et al., 2022; Liu
et al., 2024).

Limitations are the scope of datasets and one
operating point of DP, wider domains and
adaptive schedules of DP may represent more
clearly privacy utility frontiers. We also evaluate
on having good key management, honest-but-
curious coordinators; it is worth studying in more
detail ~where the aggregation is fully
decentralized and committee-based and where
the proofs of bounded norms are zero-
knowledge. Lastly, end-to-end cost models that
are stateful on training cadence, tokenomics and
validator economics would assist practitioners to
know when to use public chains (with L2) and
when permissioned deployments are more
desirable.

CONCLUSION

The paper shows that federated learning can be
coupled with a blockchain coordination layer to
provide incentive-compatible, verifiable and
privacy-preserving  training  without  any
significant loss in model quality. On average, on
a head-on comparison with plain FL, all-stack
DP, secure aggregation (SA), and on-chain
orchestration followed by a factor of 1.5-2.0
percentage points on average, the majority of
which was due to DP and not the ledger itself.
Formal privacy ( € 0.63 at ) produced much less

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW
Vol.03 No.04 (2025)

membership-inference success, whereas strong
aggregation and DP and SA decreased backdoor
success (62% plain FL) to 5.8%.

In systems perspective, the overhead of
permissioned BFT consensus was approximately
0.35 s per round which is a small cost compared
to local training. The cost and latency of Public
Proof-of-Stake networks were more expensive
and practical throughput was restored by Layer-2
anchoring and micro-batching, with minimal
impact on the accuracy. The blockchain layer
also offered auditable provenance, programmable
incentive and efficient dispute resolution, which
plain FL did not have.

Future research ought to extend to broader and
more varied problems, consider adaptive DP
budgeting along with zero-knowledge proofs of
limited-norm updates, and test decentralized or
committee-based aggregation. The end to end
cost models, which was couple tokenomics,
validator economics and training cadence, was
assist the practitioners decide on whether to
deploy in the public (with L2) or permissioned.
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