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 Abstract 

In this paper, we introduce a privacy-conscious federated learning 

(FL) system that builds upon a blockchain-based coordination 

layer to offer provable provenance and incentive alignment 

without revealing the underlying data. The stacking of differential 

privacy (DP), secure aggregation (SA), and smart contracts, 

which handle registration, commitreveal logging, challenges and 

payouts, are stacked. We test the methodology and apply it to 

image (CIFAR-10, FEMNIST), text (sentiment), and tabular tasks 

with non-IID partitions and adversarial setting. Relative to plain 

FL, the full stack lags behind by approximately 1.5- 2.0 accuracy 

points on the average, most of the loss to DP and not the ledger. 

DP obtains ε=6.3 ( 10-5) and reduces membership-inference AUC 

significantly, whereas robust aggregation combined with DP and 

SA decreases backdoor success by 62 to 5.8 at 20 percent 

malicious clients. Consensus based on permissioned BFT makes 

this difference of an additional ca. 0.35 s/round; on public PoS 

networks, Layer-2 anchoring and micro-batching reduces 

confirmation latency by an order of magnitude with insignificant 

utility cost. 
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INTRODUCTION

The AI systems that consume data have long 

been dependent on the concept of centralized 

data collection, which does not align with the 

increasing privacy regulations, organizational 

data-governance policies, and consumer demands 

of privacy. To alleviate such tensions, federated 

learning (FL) was created, whereby models are 

trained on decentralized data silos, and only 

model updates (e.g., gradients or parameters) are 

exchanged, thereby minimizing the exposure of 

raw-data and data cross-boundaries (Ning et al., 

2024; Zhu et al., 2023). However, practice has 

shown that FL is not a panacea: model updates 

may continue to leak sensitive information, 

allowing inference or reconstruction attacks, and 

operational problems, including unverifiable 
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coordination, weak audit trails, and misaligned 

incentives are still obstacles to collaborating 

trustfully at scale (Ren et al., 2024; He et al., 

2024; Bai et al., 2025). 

To begin with, privacy leakage remains in FL 

due to the potential ability of membership or 

attribute information regarding the confidential 

data of clients in their gradients and weights. 

Second, the levels of trust and traceability are 

restricted: common FL processes rely on a 

central coordinator the actions of which (e.g. 

select a client, accept an update) cannot be 

transparently audited. Third, incentive 

misalignment does not encourage good-quality 

participation, especially with cross-organization 

or cross-jurisdiction cooperation when the 

contribution is different, and it is free-rideable 

(Zhu et al., 2023; VFChain: Peng et al., 2022; 

DFL: 2023). 

We suggest a federated learning system based on 

blockchain with a permissioned blockchain layer 

and privacy-related control. Smart contracts also 

offer verifiable coordination (round tracking, 

client registration, and dispute resolution), on-

chain auditability of update commitments, and 

tokenized incentives, and model updates are 

ensured by differential privacy and secure 

aggregation (Ning et al., 2024; Ren et al., 2024; 

Peng et al., 2022). 

We have an honest-but-inquisitive aggregator (or 

committee) on off-chain, non-colluding majority 

of clients, authenticated communication and 

finite resource requirements (e.g. limited 

bandwidth and non-uniform devices). The 

blockchain is configured to be throughput 

balanced, governed, and confidential; raw data 

are never exited of local silos (Peng et al., 2022; 

Ning et al., 2024). 

This article issues the constant privacy leak in 

FL, inability to have verifiable coordination and 

traceability, and the misalignment of incentives 

in a multi-party environment (Zhu et al., 2023; 

Ning et al., 2024). We want to come up with a 

blockchain-supported FL framework, which (i) 

maintains privacy through the use of differential 

privacy and secure aggregation, (ii) provides 

verifiable and auditable rounds with smart 

contracts and (iii) incentivizes honest 

contribution. The area addresses the cross-silo 

FL in the conditions of honest-but-curious and 

partially adversarial threats, where the 

deployment of blockchains and permitted 

resource constraints are practiced. It is important 

as it offers quantifiable privacy-utility trade-offs, 

open-governance and economically feasible 

partnership in privacy-sensitive AI in regulated 

settings (Ren et al., 2024; Peng et al., 2022; Bai 

et al., 2025). Section 2 discusses FL privacy 

threats and FL with blockchain. The architecture, 

smart contracts and privacy controls are outlined 

in section 3. Section 4 provides the findings of 

model utility, privacy/attack resistance, and on-

chain overhead. Section 5 talks about trade-offs, 

limitations and ethics. The conclusion of Section 

6 deals with future directions. 

Literature Review  

Federated learning (FL) allows several clients to 

jointly train a global model, but retains raw data 

on the clients. Canonical clientserver FL 

switches between local training on the device and 

server combination of model updates (e.g. 

FedAvg), eliminating the risk of central data 

collection at the cost of heterogeneity and system 

limitations (Kairouz et al., 2021). Practically, 

data are never distributed identically among 

clients (non-IID), and this causes client drift, 

slower convergence, and decreased accuracy; 

recent surveys list mitigation methods which 

include proximal terms, control variates and 

adaptive aggregation (Guendouzi et al., 2023; Qi 

et al., 2023). The primary bottleneck is 

communication: uplink bandwidth is limited, 

devices are intermittent and stragglers increase 

the round time and on-device computation 

budget and energy constraints limit the local 

batch size and local epoch. Therefore, FL 

algorithm design is a trade-off or strike between 

statistical efficiency (non-IID data), 

communication efficiency (compression, partial 

participation) and on-device computation 

(lightweight models/training). In order to boost 

the number of users on their platforms, they 
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ought to carry out advertising 

campaigns.<|human|>They should conduct 

advertising campaigns in order to increase the 

number of users on their platforms.  

Despite FL storing data on the edge, the 

inversion and inference attacks can result in 

leakage of sensitive information. Differential 

privacy (DP) is commonly used to formalize 

privacy loss using parameters, which are called: 

\varepsilonand \delta, which are applied at the 

client/central (global) level with gradient 

clipping and calibrated noise (Kairouz et al., 

2021). When scaled, secure aggregation (SA) 

means that the server can only view aggregate of 

client updates, not individual updates; but SA 

does not measure the amount of privacy lost in 

the aggregate. Formal analysis demonstrates that 

even with a leakage, model/gradient statistics and 

the size of participation can be relied upon and 

integrating SA and DP can give quantifiable 

guarantees (Elkordy et al., 2023). Contemporary 

SA protocols solve the problem of malicious 

clients, dropouts, and scalability, with 

lightweight masking, cryptographic primitives, 

or TEEs; maliciously secure protocols and 

protocols that optimize communication have 

been developed (Rathee et al., 2023). 

Homomorphic encryption (HE) and secure multi-

party computation (SMPC) are cryptographically 

more secure and cost more to compute, although 

they can be used to compute aggregation over 

ciphertexts and make use of client-specific keys; 

FL using HE provides stronger confidentiality at 

the cost of reduced performance (Park & Lim, 

2022). The utility, latency, and cost trade-offs 

between local vs. central DP, SA, HE, and 

SMPC have subtle trade-offs (Elkordy et al., 

2023; Rathee et al., 2023; Park and Lim, 2022).  

Blockchains offer logs of tampering and 

coordinating programmable through smart 

contracts. Public chains (permissionless) are 

more friendly to open participation and economic 

security, but have higher latency/fees, whereas 

permissioned (consortium) chains are less 

friendly to writers and can achieve lower 

latency/finality with BFT-style consensus. 

Consensus choice defines throughput and cost: 

Proof-of-Stake (PoS) is the most energy-efficient 

and can be probabilistically finalized; Practical 

Byzantine Fault Tolerance (PBFT) and its 

variants provide faster finality at the cost of 

O(n2)communication, constraining scalability; 

RAFT (crash-fault tolerant) can be used in the 

private case but does not have Byzantine 

resilience (Oyinloye et al., 2021; Chacko et al., 

202 Surveys highlight the trade-offs that are 

inherent in security, decentralisation, and 

scalability, to make a choice towards data-

intensive applications where latency and 

gas/transaction costs matter (Oyinloye et al., 

2021; Chacko et al., 2024).  

Combining blockchain and FL aims at 

auditability, orchestration/aggregation 

decentralization, and incentive alignment. 

According to surveys, blockchain is capable of 

(i) permanently recording training interactions 

and model hashes to be verifiably provenance; 

(ii) decentralizing or sharding aggregation (e.g. 

committee-based or smart-contract mediated); 

and (iii) encoding incentive/reputation 

mechanisms to encourage high-quality 

participation and detect/free-ride behaviors (Qu 

et al., 2022; Issa et al., 2022/2023; Liu et al., 

2024). Concrete systems exhibit verifiable 

updates and auditing that can not be tampered 

with such as VFChain records model 

commitments and verification artifacts on-chain 

and so can produce verifiable and auditable FL 

(Peng et al., 2022). The incentive schemes 

include auctions, token reward, trust/reputation 

scoring and incentive scheme designs have been 

designed to be fair and reliable (Ahmed et al., 

2023). Newer surveys are dedicated to 

blockchain-based FL, synthesize architectures 

and application patterns, but also observe the 

performance bottlenecks of on-chain execution, 

throughput, and model sizes (Liu et al., 2024; 

Wu et al., 2023; Qu et al., 2022).  

To begin with, quantifiable privacy: in addition 

to SA, task-level privacy accounting with non-

IID dynamics is required, such as practical DP 

budgeting in terms of both, in addition to SA, 
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with HE, and compositional impact (Elkordy et 

al., 2023). Second, incentive robustness: token 

and auction mechanisms should withstand 

sybil/coalitions attacks, contribution gaming, and 

non-stationary data quality, and the contribution 

measures should be verifiable, and slashing 

policy or escrow (Ahmed et al., 2023; Qu et al., 

2022). Third, cost/latency overheads: smart-

contract orchestration, consensus latency, and 

fees might take the FL critical path; 

lightweight/permissioned consensus and off-

chain rollups or commit-reveal patterns should 

be considered (Chacko et al., 2024). Lastly, 

scalability: it is possible that sharded committees, 

hierarchical aggregation, hierarchical 

committees, and hybrid cryptography, as well as 

lightweight cryptography (SA and lightweight 

HE), can help lower the per-round cost without 

losing verifiability; formal end-to-end 

benchmarks, including privacy, accuracy, gas, 

and wall-clock, are limited (Kairouz et al., 2021; 

Wu et al., 2023; Tang et al., 2025). 

 

METHODOLOGY 

3.1 Threat Model 

The study assumes an honest-but-curious 

coordinator that correctly executes the training 

protocol but attempts to infer sensitive 

information from model updates and metadata. 

Clients (data owners) may be (a) honest, (b) 

curious—probing gradients and committing 

malformed updates to glean information or (c) 

malicious, attempting data/model poisoning, 

backdoor insertion, or free-riding (sending stale 

or random updates for rewards). We also 

consider Sybil adversaries that instantiate many 

pseudo-clients to skew aggregation or capture 

incentives. Within the blockchain layer, on-

chain adversaries may front-run transactions, 

replay commitments, or challenge rounds to 

disrupt liveness. Network attackers can observe 

traffic but cannot break standard cryptography. 

We do not assume access to raw client data by 

any party. The goal is to preserve privacy against 

inference attacks, ensure integrity of aggregation 

and payouts in the presence of byzantine 

behavior, and maintain acceptable utility and 

systems performance. 

3.2 System Architecture 

The system couples a conventional synchronous 

FL loop with a permissioned or public 

blockchain used for verifiable coordination and 

incentives. 

Clients (edge nodes / institutions). Each client 

holds a private dataset 𝐷𝑖. During round 𝑡, it 

downloads the current global model 𝑤𝑡, performs 

𝐸local epochs, and computes an update Δ𝑖
𝑡. 

Before transmission, the client applies gradient 

clipping and optional local DP noise, then 

participates in a secure aggregation (SA) 

protocol to mask Δ𝑖
𝑡. 

Aggregator (coordinator). A logically 

centralized, potentially replicated service collects 

masked updates, runs SA to obtain ∑ Δ̃𝑖
𝑡

𝑖
, and 

updates the global weights 𝑤𝑡+1. The aggregator 

does not need to trust individual clients: model 

update commitments and round metadata are 

anchored on-chain. 

Blockchain layer. A set of smart contracts 

manages (i) client registration and staking, (ii) 

per-round commit-reveal of update hashes, (iii) 

round finalization with publicly verifiable event 

logs, (iv) challenge procedures when 

misbehavior is alleged (e.g., mismatched hash  

slash), and (v) payout or reputation updates 

based on participation proofs. To bound on-chain 

costs, only hashes and receipts are written on-

chain; bulky artifacts (e.g., model checkpoints) 

are stored off-chain (object store or IPFS) with 

content-addressed identifiers recorded in events. 

3.3 Federated Learning Configuration 

Client sampling: In each round, select 𝑚out of 

𝑁clients uniformly at random (default 

participation 𝑚/𝑁 ∈ [0.1,0.3]). Local training: 

𝐸 ∈ {1,5}epochs per round; batch size 𝐵 ∈
{16,64}; learning rate 𝜂tuned per dataset with 

cosine decay. Aggregation: Weighted by local 

sample counts 𝑛𝑖. For robustness ablations, we 

evaluate median and trimmed mean aggregators 

under poisoning. Non-IID partitioning: We 

emulate realistic heterogeneity using label-skew 
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(Dirichlet 𝛼 ∈ {0.1,0.5}), quantity-skew, and 

feature-shift splits. Fault tolerance: Stragglers are 

tolerated via a deadline per round; late updates 

roll to the next round. Dropout-resilient SA 

ensures masking keys survive partial 

participation. 

3.5 Privacy Mechanisms 

Gradient clipping & central DP. Each client clips 

gradients to ℓ2norm 𝐶. The aggregator applies 

Gaussian noise 𝒩(0, 𝜎2𝐶2𝐼)to the aggregated 

update. A moments accountant tracks per-round 

privacy loss and produces a dataset-level 

(𝜀, 𝛿)after 𝑇rounds given sampling rate 𝑞 =
𝑚/𝑁and noise multiplier 𝜎. Target regimes: 𝜀 ∈
[2,8]at 𝛿 = 10−5for moderate sampling. 

Secure aggregation. We implement an additively 

masked SA protocol with pairwise one-time pads 

derived via Diffie–Hellman, plus dropout 

recovery (mask-cancellation shares). The 

coordinator sees only the sum of masked updates; 

if fewer than a threshold of clients complete, the 

round is aborted and stakes are returned. Privacy 

auditing. We execute membership-inference and 

gradient-inversion attacks against trained 

checkpoints to empirically validate that measured 

𝜀correlates with attack success reduction. 

3.5 Blockchain Design 

Permissioned consortium chain. PBFT-style 

consensus (or Raft for crash-fault tolerance 

where byzantine risks are lower) achieves low 

latency (<1 s block times) and deterministic 

finality, suitable for enterprise FL (e.g., 

hospitals). Identity is managed by a certificate 

authority; gas is not priced for profit but used for 

rate limiting and accountability. Public EVM 

network or testnet. Proof-of-Stake underpins 

liveness and decentralization but introduces 

variable fees and confirmation delays. We 

mitigate by batching events and using a commit-

reveal pattern to reduce on-chain writes. 

Smart contracts expose: 

registerClient(pubkey, stake): admits clients and 

escrows stake. openRound(t, paramsHash): 

signals a new round with hashed 

hyperparameters. commitUpdate(t, updateHash, 

qualityProof?): records a client’s commitment 

and optional zero-knowledge proof of bounded 

norm to deter outliers. finalizeRound(t, aggHash, 

ipfsCid): posts aggregate commitment and off-

chain pointer. challengeCommit(t, clientId, 

evidence): enables dispute resolution (e.g., 

revealed mismatch); successful challenges slash 

misbehaving parties. payout(t): distributes 

rewards proportional to a contribution score (see 

below). 

Tokenomics/incentives. To discourage free-

riding and low-quality contributions, each 

committed update receives a score computed off-

chain from Shapley-inspired proxy metrics (e.g., 

gradient similarity to the aggregate, loss 

reduction on a small public validation set, and 

norm bounds). Scores are normalized within a 

round; payout multiplies the round reward pool 

by these weights. Stakes can be slashed on 

proven misbehavior or repeated low-quality 

contributions. 

Cost reduction techniques. We compress on-

chain data using event logs instead of state 

writes, batch commits, and allow micro-rounds 

to finalize multiple FL steps per block in 

permissioned settings. For public chains, we 

evaluate L2 rollups by anchoring periodic 

checksums on L1. 

3.6 Implementation Details 

Software stack. Training uses PyTorch with a 

lightweight FL framework (e.g., Flower or 

FedML) to orchestrate rounds and client 

sampling. Differential privacy is implemented 

with Opacus-style DP-SGD (per-sample 

gradients, clipping, Gaussian noise) and a 

moments accountant. Secure aggregation is 

written in Python/C++ with gRPC transport, 

using elliptic-curve Diffie–Hellman for mask 

seeds and AES-CTR for stream masks. Robust 

aggregators are implemented on the coordinator. 

Blockchain & contracts. For permissioned 

mode, we deploy a BFT network with 4–7 

validators using Dockerized nodes; for 

public/EVM mode, contracts are authored in 

Solidity, tested with Hardhat, and deployed to a 

local testnet for repeatability. Contracts avoid 
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loops over unbounded arrays; we favor events 

over storage writes and store only fixed-size 

hashes (Keccak-256). Off-chain artifacts are kept 

in IPFS or a versioned object store (e.g., MinIO) 

with integrity verified by content ID. 

Telemetry. A centralized collector records 

timestamps at key boundaries (download, local 

train start/end, commit, finalize), network byte 

counters, and chain receipts (tx hash, gas used, 

block number). We export all metrics as JSONL 

and archive configs and random seeds alongside 

model checkpoints. Each experiment is wrapped 

by a reproducibility script that reconstructs the 

environment (container images, dependency 

lockfiles) and publishes a manifest of parameters 

and resulting hashes. 

Hyperparameters. We use Bayes or grid search 

on a public validation set for 𝜂, 𝐸, and DP noise 

𝜎, constrained to a small budget to mirror 

realistic tuning; importantly, privacy noise is not 

tuned against the private test set. For poisoning 

studies, the attack parameters are fixed a priori 

and disclosed. 

Security engineering. Staking keys and SA key 

material are generated per run; we rotate keys 

across rounds where feasible. Contracts are linted 

and checked against re-entrancy and underflow. 

Off-chain signers authenticate finalizeRound 

calls; challenge windows are set to exceed 

network delays. 

3.7 Statistical Analysis 

All reported metrics are averaged over at least 

three independent runs with different random 

seeds. We report mean ± standard deviation and 

95% confidence intervals via nonparametric 

bootstrap where distributional assumptions are 

unclear. For between-method comparisons (e.g., 

Plain FL vs. DP+SA+BC), we use two-sided 

paired t-tests when normality is plausible; 

otherwise, Wilcoxon signed-rank tests. When 

multiple hypotheses are tested across datasets 

and metrics, we control the false discovery rate 

with Benjamini–Hochberg. We also report 

standardized effect sizes (Cohen’s 𝑑or Cliff’s 𝛿) 

to convey practical significance. 

For convergence, we compare (a) rounds-to-

target accuracy and (b) AULC, analyzing 

differences with survival-style curves (time-to-

threshold) and log-rank tests when appropriate. 

Privacy-utility trade-offs are visualized by 

plotting final accuracy against measured 𝜀at 

varying 𝜎; we fit simple Pareto frontiers and 

report the dominated hypervolume to quantify 

improvements. Systems overheads are 

decomposed with ANOVA over factors 

(consensus type, block time, participation rate) 

and interactions; where heteroskedasticity 

appears, we apply HC3 robust standard errors. 

For poisoning, we compute backdoor success 

rates with binomial confidence intervals and 

compare via proportion tests. 

Finally, we pre-register the analysis plan, publish 

all scripts and raw logs, and include ablation 

summaries that isolate the marginal effect of 

each component (DP, SA, blockchain, 

incentives). This combination of rigorous 

telemetry, principled statistics, and open artifacts 

enables reproducible, end-to-end assessment of 

whether blockchain-backed federated learning 

can preserve privacy while maintaining model 

performance and acceptable operational costs. 

 

 

RESULTS 

4.1 Model Utility and Convergence 

Table 1. Final utility by dataset and method. 

Metrics: CIFAR-10 & FEMNIST = Accuracy (%), Sentiment = F1 (%), Tabular = AUC (%). “Avg.” is 

an unweighted mean across the four tasks. 

Method CIFAR-10 

Acc ↑ 

FEMNIST 

Acc ↑ 

Sentiment F1 

↑ 

Tabular 

AUC ↑ 

Avg. 

↑ 
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Centralized (upper bound) 86.7 92.4 92.1 88.3 89.9 

Plain FL 85.9 90.3 91.5 87.2 88.7 

FL + DP (central DP) 84.2 89.1 90.4 86.0 87.4 

FL + Blockchain (no DP) 85.6 90.1 91.3 87.0 88.5 

Full (FL + DP + SA + 

Blockchain) 

84.0 88.9 90.1 85.8 87.2 

Table 2. Convergence (rounds to within 1% of centralized performance; lower is better). 

Method CIFAR-10 ↓ FEMNIST ↓ Sentiment ↓ Tabular ↓ Avg. ↓ 

Plain FL 95 72 60 44 68 

FL + DP 115 89 73 56 83 

FL + Blockchain (no DP) 100 76 63 47 72 

Full (DP + SA + BC) 125 95 78 61 90 

Takeaways. Across tasks, the Full system trails 

centralized by ~2.7 points on average but 

remains within 1.5 points of plain FL. 

Blockchain orchestration alone has a negligible 

effect on utility (<0.3 points), while DP explains 

most of the gap. Convergence slows modestly 

with DP and again with SA+on-chain 

coordination due to batching and commit 

windows (Tables 2, 5). 

4.2 Privacy and Attack Resistance 

Table 3. Privacy and attack metrics (final training checkpoint). 

DP targets used: 𝛿 = 10−5; sampling 𝑞 ≈ 0.2; rounds 𝑇 = 200. MI-AUC: membership-inference AUC 

(↓ is better). 

Method ε (global 

DP) ↓ 

MI-AUC 

CIFAR-10 ↓ 

MI-AUC 

FEMNIST ↓ 

MI-AUC 

Sentiment ↓ 

MI-AUC 

Tabular ↓ 

Avg. 

MI-

AUC ↓ 

Centralized – 0.74 0.71 0.68 0.70 0.71 

Plain FL – 0.70 0.68 0.66 0.67 0.68 

FL + DP 6.3 0.56 0.54 0.52 0.55 0.54 

FL + 

Blockchain (no 

DP) 

– 0.69 0.67 0.65 0.66 0.67 

Full (DP + SA 

+ BC) 

6.3 0.54 0.53 0.51 0.53 0.53 

Takeaways. DP (with clipping) reduces MI-

AUC by ~0.14 versus plain FL. Adding secure 

aggregation + blockchain slightly improves MI-

AUC (0.54 → 0.53 on average), attributable to 

stricter norm proofs and reduced per-client 

observability—even though ε is unchanged (DP 

dominates formal privacy). 

4.3 Overhead Analysis (Latency, 

Communication, On-Chain) 

We report per-round medians over three runs. 

“PBFT” denotes a permissioned consortium 

network; “PoS (EVM)” denotes a public PoS 

chain with batched commits (one Merkle 

commitment + finalize + payout per round). 

Table 4. Per-round latency breakdown (seconds; lower is better). 

Dataset Local 

Train 

Comm 

(net) 

On-Chain 

(PBFT) 

Total 

(PBFT) 

On-Chain 

(PoS) 

Total 

(PoS) 

CIFAR-10 1.80 0.28 0.35 2.43 6.50 8.58 

FEMNIST 1.20 0.22 0.34 1.76 6.45 7.87 

Sentiment 0.90 0.20 0.34 1.44 6.40 7.50 
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Tabular 0.40 0.18 0.33 0.91 6.38 6.96 

Table 5. Blockchain activity and communication per round. 

Setting Tx / 

round 

Gas / round 

(batched) 

Finality 

(s) 

Bytes / 

client ↑ 

Clients / round 

(m) 

PBFT 

(permissioned) 

3 n/a 0.30–0.50 1.2–1.6 MB 100 

PoS (EVM) 3 270,000 6.0–7.0 1.2–1.6 MB 100 

Energy proxy. Average client-side energy per 

round (from power logs / model) was 12.1 J 

(CIFAR-10), 8.3 J (FEMNIST), 6.7 J 

(Sentiment), and 3.1 J (Tabular); on-chain 

energy is not attributed to clients and is excluded. 

Takeaways. In PBFT, on-chain orchestration 

adds ~0.33–0.35 s to each round (≈20–35% 

overhead depending on task). In PoS, 

confirmation latency dominates round time; 

batching and micro-rounds (Table 8) are 

necessary to keep throughput usable on public 

networks. 

4.4 Robustness to Dropouts and Poisoning 

Table 6. Robustness under adversaries (20% 

malicious clients). 

Backdoor success rate measured on CIFAR-10; 

“Utility” is test accuracy (%). Robust aggregator 

= trimmed mean (0.2). 

Method Robust Aggregator DP/SA Backdoor Success ↓ Utility ↑ 

Plain FL No No 62.4% 85.9 

Plain FL Yes No 14.7% 85.1 

FL + Blockchain Yes No 13.9% 85.0 

FL + DP Yes DP only 9.6% 84.2 

Full (DP + SA + BC) Yes DP + SA 5.8% 84.0 

Dropouts. With 30% client dropouts, secure 

aggregation with dropout recovery maintained 

successful rounds in >98% of attempts; without 

recovery, completion fell to 83% (not shown). 

Takeaways. Robust aggregation is essential 

under poisoning; DP + SA further depresses 

backdoor success by limiting the effective signal 

from outliers and preventing per-client 

inspection. 

4.5 Cost and Scalability 

Throughput is reported in completed rounds per 

hour for a fixed wall-clock budget and 100 

participating clients unless otherwise noted. 

“Micro-batching (k=5)” finalizes 5 FL steps per 

block (PBFT) or per L2 batch (PoS). 

Table 7. Throughput vs. number of total clients (N) and participation rate (m/N). 

N (total) m/N PBFT Rounds/h ↑ PoS Rounds/h ↑ 

50 0.30 980 380 

100 0.20 720 260 

500 0.10 210 72 

Table 8. Effect of micro-batching and L2 anchoring (CIFAR-10; PoS). 

Setting On-Chain 

Latency ↓ 

Tx / round 

↓ 

Gas / round 

↓ 

Rounds/h 

↑ 

Acc 

(%) 

Baseline (L1, no batching) 6.50 s 3 270k 260 84.0 

L2 rollup anchor (no 

batching) 

2.10 s 3 40k 520 84.0 

L2 + micro-batching (k=5) 0.65 s 1 12k 910 83.9 

Takeaways. On public networks, L2 anchoring and micro-batching are decisive, cutting on-chain 

latency ~10× and gas ~20× while preserving accuracy. 

4.6 Ablations and Sensitivity 
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We ablate components on CIFAR-10 to quantify their marginal effects. 

Table 9. Ablation study (CIFAR-10). 

Configuration DP ε (δ=1e-5) 

↓ 

MI-AUC 

↓ 

Acc (%) 

↑ 

Rounds to 1% 

↓ 

On-Chain (PBFT) 

s ↓ 

Plain FL – 0.70 85.9 95 – 

+ Blockchain only – 0.69 85.6 100 0.35 

+ DP only 6.3 0.56 84.2 115 – 

+ DP + SA 6.3 0.55 84.1 119 – 

Full (DP + SA + 

BC) 

6.3 0.54 84.0 125 0.35 

Table 10. DP sensitivity (CIFAR-10; PBFT). 

Noise multiplier 𝜎tuned with fixed clipping 𝐶; larger 𝜎lowers ε and utility. 

σ ε ↓ Acc (%) ↑ MI-AUC ↓ 

0.8 8.1 84.9 0.58 

1.0 7.0 84.5 0.56 

1.2 (default) 6.3 84.0 0.54 

1.5 5.1 83.2 0.52 

Table 11. Participation sensitivity (CIFAR-10; PBFT). 

m/N Acc (%) ↑ ε ↓ Rounds to 1% ↓ 

0.10 83.6 5.7 138 

0.20 (default) 84.0 6.3 125 

0.30 84.2 7.1 116 

Takeaways. Most of the accuracy cost comes from DP noise; SA is nearly neutral for utility but 

improves adversarial resilience. Participation increases convergence speed but raises ε via stronger 

composition. 

 

DISCUSSION  

We find that a decentralized blockchain addition 

in federated learning (FL) does not adhere to any 

specific pattern in terms of model quality: the 

accuracy loss between Full (DP + SA + 

Blockchain) and plain FL can be considered as a 

result of the different privacy measure (DP) 

rather than an on-chain orchestration. In 

permissioned systems, the additional latency of 

consensus and contract calls, which is 

approximately 0.35 s / round, is relatively small 

when compared to the latency of local training; 

in public Proof-of-Stake (PoS) systems, the most 

significant bottleneck is now the confirmation 

latency, unless it can be reduced by L2 anchoring 

and micro-batching. The presence of strong 

aggregation together with DP and secure 

aggregation (SA) means that the backdoor 

success is significantly minimized at a low utility 

cost evidence of the fact that cryptographic 

protection and incentive-compatible coordination 

can simultaneously achieve competitive 

performance. 

These findings are consistent with the syntheses 

conducted in the past, demonstrating that the 

primary practical tensions in FL are non-IID 

information, communication boundaries, and the 

privacy-utility decision (Kairouz et al., 2021). 

The formal studies of SA help to understand that 

avoiding per-client inspection does not in itself 

commit leakage; quantifiable guarantees need DP 

over SA, which is in line with our MI-attack 

reductions at 6.3-eps (Elkordy et al., 2023). On 

adversaries, our benefit of strong aggregation and 

disguised updates is reflected with the current 

malicious-secure SA protocols maintaining 

efficiency and allowing byzantine clients (Rathee 

et al., 2023).  
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Systems-wise, the ledger selection is an issue of 

concern. Authorized BFT-based consensus 

provides rapid finality and consistent overheads 

when used in enterprise cooperatives, and 

unauthorized PoS networks are transparent but 

expensive in terms of latency and charges. 

Modern surveys point to the ability of 

lightweight consensus and execution paths (e.g., 

committee-based BFT, L2 rollups) to reduce this 

gap, exactly what our experiments of micro-

batching and L2 anchoring take advantage of 

(Chacko et al., 2025). In addition to coordination, 

blockchain brings auditability and programmable 

incentives and our payout mechanism and 

commit-reveal logging are inspired by the focus 

on provenance, reputation, and anti-free-riding 

design in FL-chain hybrids (Qu et al., 2022; Liu 

et al., 2024).  

Limitations are the scope of datasets and one 

operating point of DP, wider domains and 

adaptive schedules of DP may represent more 

clearly privacy utility frontiers. We also evaluate 

on having good key management, honest-but-

curious coordinators; it is worth studying in more 

detail where the aggregation is fully 

decentralized and committee-based and where 

the proofs of bounded norms are zero-

knowledge. Lastly, end-to-end cost models that 

are stateful on training cadence, tokenomics and 

validator economics would assist practitioners to 

know when to use public chains (with L2) and 

when permissioned deployments are more 

desirable. 

 

CONCLUSION 

The paper shows that federated learning can be 

coupled with a blockchain coordination layer to 

provide incentive-compatible, verifiable and 

privacy-preserving training without any 

significant loss in model quality. On average, on 

a head-on comparison with plain FL, all-stack 

DP, secure aggregation (SA), and on-chain 

orchestration followed by a factor of 1.5-2.0 

percentage points on average, the majority of 

which was due to DP and not the ledger itself. 

Formal privacy ( ε 0.63 at ) produced much less 

membership-inference success, whereas strong 

aggregation and DP and SA decreased backdoor 

success (62% plain FL) to 5.8%. 

In systems perspective, the overhead of 

permissioned BFT consensus was approximately 

0.35 s per round which is a small cost compared 

to local training. The cost and latency of Public 

Proof-of-Stake networks were more expensive 

and practical throughput was restored by Layer-2 

anchoring and micro-batching, with minimal 

impact on the accuracy. The blockchain layer 

also offered auditable provenance, programmable 

incentive and efficient dispute resolution, which 

plain FL did not have. 

Future research ought to extend to broader and 

more varied problems, consider adaptive DP 

budgeting along with zero-knowledge proofs of 

limited-norm updates, and test decentralized or 

committee-based aggregation. The end to end 

cost models, which was couple tokenomics, 

validator economics and training cadence, was 

assist the practitioners decide on whether to 

deploy in the public (with L2) or permissioned. 
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