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Abstract 
The rapid proliferation of large language models (LLMs) like ChatGPT has revolutionized text generation, 

enabling the creation of highly fluent and contextually relevant content that rivals human writ- ing. However, 

this capability also poses substantial risks, including the spread of disinformation, fake news amplification, social 

manipulation, and phishing schemes. While detection methods for deepfake images and videos have advanced 

significantly, identifying synthetic text remains a nascent field, plagued by issues such as poor robustness, limited 

generalization across domains, and vulnerability to adversarial modifications. Even human evaluators often fare 

little better than chance in distinguishing AI-generated from human-authored text. This study addresses these gaps 

through a comprehensive benchmarking of popular transformer-based models BERT-base-uncased, RoBERTa-

base, ALBERT-base-v2, and DistilBERT on three diverse datasets: Tweep- Fake (short social media posts), 

TuringBench (multi-domain and multi-generator benchmarks), and the Hu- man ChatGPT Comparison Corpus 

(HC3) in English. By conducting dataset-specific evaluations, we provide insights into how model architecture, 

size, and design impact detection accuracy, efficiency, and adaptabil- ity. Our key contributions include a 

balanced comparison of lightweight and larger models for deepfake text classification, cross-dataset analysis to 

highlight generalization strengths and weaknesses, and practical recom- mendations for deploying these detectors 

in real-world scenarios. Results demonstrate that RoBERTa generally outperforms others in accuracy, while 

lighter models like DistilBERT offer trade-offs in speed and resource use, underscoring the need for hybrid 

approaches to enhance robustness. 
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1 Introduction 

The rapid advancement of large language models such as ChatGPT has fundamentally changed 

the way written content is produced. These models generate text that is fluent, coherent, and 

contextually aligned, often rivaling the quality of human authorship. Their practical value is 

already evident in diverse applications, including report drafting, document summarization, 

and conversational agents that support everyday tasks. However, alongside these benefits come 

significant risks. Synthetic text can be misused in disinformation campaigns, the spread of 

fabricated news, online manipulation, and sophisticated phishing attempts. Such possibilities 

introduce serious ethical and societal challenges that demand careful attention. In contrast to 

the significant progress made in detecting manipulated images and videos [1], [2], research on 

deepfake text detection is still in its early stages. Recent surveys indicate that current methods 

struggle with robust- ness, generalization across domains, and resilience against adversarial 

manipulation [3], [4]. Equally concerning is the observation that human evaluators often 

perform only marginally better than chance when asked to distinguish between human-

authored and machine-generated text [5]. 

A further limitation of existing work is the narrow scope of evaluation. Many studies depend 

on a single dataset or a limited set of models, which restricts the generalizability of their 

findings across varied textual domains [6]. Recent initiatives, including the RAID benchmark 

[7] and approaches such as multi-level contrastive learning [8], represent promising steps 

toward more resilient detection strategies. Yet, comprehensive comparisons of widely adopted 

trans- former models across multiple datasets remain scarce, leaving a critical gap in our 

understanding of their strengths and limitations. To address this gap, our study provides a 

detailed analysis of several well-known transformer models—BERT- base-uncased, RoBERTa-

base, ALBERT-base-v2, and DistilBERT—using three important benchmarks for deepfake text 
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detection. These benchmarks are TweepFake, TuringBench, and the Human ChatGPT 

Comparison Corpus known as HC3. The aim is to evaluate each model’s strengths and 

weaknesses and to consider how well they generalize across varied forms of synthetic and 

human-authored text. 

 

 

Figure 1: Overview of the proposed study. 

 

The main goal of this study is to conduct a structured comparison of transformer models across 

different scales. Lightweight architectures such as DistilBERT and ALBERT are assessed 

alongside larger and more expressive models like BERT and RoBERTa. The evaluation is 

carried out on datasets that reflect diverse forms of text: TweepFake captures short, informal 

posts from social media; TuringBench includes multiple domains through structured prompts; 

and HC3 contains paired responses generated by humans and ChatGPT in English. By 

analyzing performance across these varied sources, the study provides insights into how 

model size and design influence accuracy, robustness, and generalization to new types of text. 

This comparison ultimately points to which architectures are more dependable in real-world 

scenarios where distinguishing between human and machine-generated writing is essential. 

The key contributions of this work are as follows: 

1. A balanced benchmarking of compact transformer models such as DistilBERT and 

ALBERT against larger coun- terparts like BERT and RoBERTa, emphasizing the trade-

off between computational efficiency and predictive accuracy in deepfake text detection. 

2. An evaluation across TweepFake, TuringBench, and HC3, datasets that together cover a 

wide range of domains and writing styles, offering a comprehensive foundation for 

analysis. 

3. Findings that show how models of different scales adapt to linguistic variation, while 

also highlighting persistent challenges in achieving strong cross-domain generalization. 

The remainder of the paper is structured in the following way. Section 2 reviews related studies 

on feature-based, model- based, watermarking, and adversarial approaches for text detection. 

Section 3 describes the datasets, explains their dis- tinctive properties, and outlines the 

preprocessing applied for consistency. Section 4 presents the methodology, covering model 

selection, fine-tuning procedures, and the experimental setup. Section 5 reports the findings, 

including compar- isons across datasets, analysis of generalization, and discussion of both 

strengths and weaknesses of the evaluated models. Section 6 summarizes the outcomes and 

points toward directions for future research. 

2 Related Work 

The evolution of deepfake detection research spans multiple modalities, including images, 

audio, and text, with each domain presenting unique challenges and opportunities. Early 

efforts in text detection leaned heavily on feature-based approaches were among the earliest 

techniques applied to the problem of deepfake text detection. These methods rely on extracting 

linguistic, stylistic, or statistical features from text, which are then used as input to classifiers. 

[9] laid the foun- dation in the context of fake news detection on social media. They analyzed 

both content features (lexical and syntactic cues) and context features (user metadata, social 
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network propagation) to train traditional classifiers such as support vector machines and random 

forests. Using large collections of annotated social media posts, their framework demonstrated 

that combining textual and user-based features improved detection accuracy by 8–12% 

compared to content-only models, es- tablishing the importance of hybrid signals in 

misinformation detection. Building on linguistic markers, [10] investigated how shallow text 

statistics can differentiate human and machine-generated text. They curated a dataset of GPT-

2 outputs alongside human references, and evaluated both human annotators and automated 

feature-based classifiers. Human ac- curacy hovered around 52%, only slightly above random 

chance, while automated classifiers using features such as word frequency distributions and 

sentence length variability achieved stronger results. However, feature-based methods were 

outperformed by transformer classifiers, showing F1 scores close to 70% compared to over 80% 

for RoBERTa. The work of [11] extended feature-based approaches by introducing factual 

consistency as an explicit dimension. Their system cross-checked statements in generated text 

against structured knowledge bases, transforming factual overlap into numeri- cal features for 

classification. On a dataset of news-style deepfake text, their model improved detection 

accuracy by 6–8% over baseline BERT and feature-only classifiers, illustrating that grounding 

text in external knowledge offers measurable benefits. Robustness of feature-based methods 

has also been studied. [12] examined how handcrafted features respond under adversarial 

perturbations. By applying small semantic-preserving edits to machine-generated sentences, 

they re- ported that classifiers relying on surface-level signals such as n-grams or stylistic 

counts saw a 20–30% accuracy drop. Their findings highlighted the fragility of feature-based 

methods when adversaries actively attempt to evade detection. Finally, dataset-specific feature 

engineering has shown varying levels of success. For example, in TweepFake, where tweets 

are typically short and noisy, [13] tested classifiers built on character n-grams, word statistics, 

and punctuation frequency. Their feature-based models achieved F1 scores around 0.65, 

considerably lower than transformer baselines, but still outperforming random chance. This 

gap underscored both the utility and the limitations of handcrafted features when facing 

modern generative models in realistic social media contexts. 

While feature-based methods laid the foundation for detecting synthetic text, model-based 

approaches using deep learning and transformer architectures have rapidly become the 

dominant paradigm. These methods exploit contextual embeddings and pre-trained language 

models to capture nuanced signals of machine-generated text. [10] provided one of the earliest 

systematic evaluations of neural baselines against human detection. They tested LSTM 

classifiers and fine-tuned trans- formers such as RoBERTa on a dataset of GPT-2 generated 

outputs. Results showed that RoBERTa-large achieved F1 scores above 80%, significantly 

outperforming both human evaluators upto 52% accuracy and simpler recurrent mod- els, 

highlighting the superior representational capacity of transformer models in this domain. 

Expanding the evaluation setting, [14] introduced TuringBench, a benchmark covering 200K 

samples across 20 generator types. They tested a range of classifiers including logistic 

regression, CNNs, LSTMs, and transformers like BERT, RoBERTa, XLNet. Their results 

indicated that RoBERTa and XLNet consistently outperformed others, achieving accuracies 

above 85% in binary human-vs-machine classification, whereas traditional classifiers lagged 

by 20–30 percentage points. However, cross- generator generalization remained a challenge: 

models trained on GPT-2 often failed to detect GPT-3 outputs reliably. 

[13] specifically explored short-text contexts with the TweepFake dataset, composed of over 

25,000 tweets generated by multiple bots and neural generators. They compared classical 

machine learning, CNNs, LSTMs, and transformer-based detectors. BERT-based models 

achieved the highest performance, with F1 scores close to 0.90, clearly outperforming 

traditional baselines (0.65). These findings suggested that contextual embeddings are 
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particularly effective even in noisy, short-message settings such as Twitter. In another domain, 

[15] presented the HC3 dataset, focusing on human–AI con- versations. They evaluated 

models including BERT, RoBERTa, and larger LLM-based detectors to separate ChatGPT 

responses from human-authored ones. Their experiments showed that RoBERTa and BERT 

fine-tuned on HC3 achieved accuracies in the 78–82% range, while larger zero-shot LLM 

detectors performed less consistently. Importantly, they demonstrated that training on 

conversation-style text is necessary, as models trained on news or tweets generalized poorly to 

dialogue. Recent research by [5] examined how transformer models perform under real-world 

conditions, focusing on their robustness. The study employed a large-scale benchmark 

spanning multiple domains and evaluated fine-tuned BERT and RoBERTa models alongside 

adversarially trained detectors. While RoBERTa-large reached strong F1 scores exceeding 

85% , its performance dropped by as much as 20% when subjected to adversarial perturbations 

or tested across domains. These findings emphasize the persistent difficulty of achieving both 

domain adaptability and resilience against adversarial attacks in transformer-based detection. 

Taken together, existing studies reaffirm that transformer models such as BERT and RoBERTa 

set the current state-of-the-art for deepfake text detection, consistently outperforming feature- 

driven and recurrent neural approaches on datasets including TuringBench, TweepFake, and 

HC3. At the same time, they draw attention to unresolved challenges, particularly the lack of 

generalization across unseen generators, limited robustness in cross-domain settings, and 

susceptibility to adversarial manipulation. 

Beyond detection models, an emerging strategy to address deepfake text is the use of 

watermarking and cryptographic techniques. These methods embed identifiable statistical or 

cryptographic patterns during text generation, enabling reli- able verification post-hoc. A 

pioneering study by Kirchenbauer et al. [16] proposed A Watermark for Large Language 

Models, where probabilistic watermarking is introduced during decoding. Their methodology 

modifies the token sampling distribution by partitioning the vocabulary into “green-listed” and 

“red-listed” tokens. By biasing the generator toward green tokens, they ensure detectable 

statistical patterns in outputs. Experiments on benchmark corpora such as C4 and WikiText 

showed detection accuracy exceeding 95% with only 200 tokens of text, while maintaining 

fluency and perplex- ity comparable to unmarked outputs. Building on cryptographic rigor, 

Aaronson [17] discussed the feasibility of embed- ding cryptographically verifiable 

watermarks directly into large language model outputs. While his work was conceptual rather 

than dataset-driven, it outlined protocols where secret keys determine token-biasing rules, 

making watermarks prac- tically undetectable to end-users but easily verifiable by trusted 

authorities. The results emphasized that cryptographic watermarking could serve as a 

lightweight accountability mechanism without sacrificing model performance. Another 

experimental advancement is the work of Zhao et al. [18], who introduced Provable Robust 

Watermarking for Generative Models. Their methodology used error-correcting codes and 

pseudorandom functions to insert watermarks into gener- ated text. Tested on GPT-2 and GPT-

3 outputs, their system achieved watermark recovery rates above 90% even when adversarial 

paraphrasing was applied. However, they reported challenges in very short texts (¡50 tokens), 

where statistical signals were insufficiently strong. Complementary efforts by Christ et al. [19] 

explored the robustness of watermarking schemes under adversarial attacks. Using 

paraphrasing tools and machine translation to simulate real-world evasion, they found that 

na¨ıve watermarking degraded significantly accuracy drops of 30–40%. Their results 

highlighted the need for more resilient cryptographic embedding strategies that can survive 

transformations common in misinformation and so- cial media contexts. Taken together, 

watermarking and cryptographic approaches offer promising complementary tools to model-

based detection. They enable proactive identification of AI-generated text without relying on 



CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW  

Vol.03 No.03 (2025) 

 

2847  

classifiers alone. However, results so far reveal vulnerabilities to paraphrasing and domain 

shifts, suggesting that future research should combine watermarking with detection 

frameworks for greater robustness. 

Another line of research in deepfake text detection investigates robustness against adversarial 

manipulation, focusing on how small changes to machine-generated text can bypass existing 

detectors. [12] analyzed the limitations of current de- tectors under adversarial perturbations. 

They constructed a dataset of GPT-2 and GPT-3 outputs, which they paraphrased and lightly 

edited to simulate evasion attempts. Classical feature-based classifiers experienced sharp 

performance drops, with accuracy falling by up to 30%. Even fine-tuned BERT models 

suffered, revealing that detectors often rely on shal- low lexical cues rather than deeper 

semantic signals. Their findings underscore the fragility of both feature-based and transformer-

based methods when exposed to adversarially modified text. To explicitly counter these 

vulnerabilities, [20] proposed RADAR, an adversarial learning framework that improves 

detector robustness. Their methodology incorporated adversarial training, where BERT and 

RoBERTa models were fine-tuned not only on original text but also on adversarially 

perturbed versions generated through paraphrasing and synonym substitution. Using the 

TuringBench dataset, RADAR improved detection accuracy by 10–15% under attack 

compared to standard fine-tuning, while maintaining comparable performance on clean text. 

This work demonstrated that adversarial training can significantly increase model resilience in 

practice. Similarly, [5] investigated domain robustness using their large-scale benchmark of 

real-world text. They evalu- ated detectors such as RoBERTa-large across multiple domains 

including news, social media, and Q&A forums. Results showed that while RoBERTa achieved 

F1 scores above 85% within-domain, cross-domain performance dropped by up to 20 

percentage points. They also simulated adversarial paraphrasing attacks, under which 

detection accuracy further degraded. Their study emphasized that robustness is not only an 

adversarial problem but also a cross-domain generaliza- tion challenge. In addition, [21] 

introduced RAID, a shared benchmark designed to test robustness systematically across 

multiple adversarial scenarios. RAID includes perturbations such as back-translation, synonym 

replacement, and stylistic transformations applied to datasets like TuringBench and HC3. 

Their evaluation showed that detectors optimized on a single dataset generalize poorly across 

transformations: performance dropped by an average of 25% across perturbation types. RAID 

therefore provides a standardized way to assess resilience and highlights the necessity of 

training detec- tors for adaptability. Collectively, these adversarial and robustness-oriented 

studies reveal a key limitation of deepfake text detection: high performance on clean 

benchmarks often fails to translate under adversarial or cross-domain condi- tions. Robust 

training frameworks such as RADAR and evaluation environments like RAID represent crucial 

steps toward detectors capable of operating reliably in real-world adversarial settings. 

Hybrid methods combine linguistic, statistical, and deep learning features to improve the 

robustness of deepfake text detection, while anomaly detection techniques aim to identify 

irregularities in distribution or style that signal synthetic origin. [10] were among the first to 

highlight the challenge of distinguishing human from machine-generated text under conditions 

where humans are themselves deceived. They constructed a dataset of GPT-2 outputs alongside 

human-written texts and tested both feature-based classifiers and neural detectors. Results 

showed that detection accuracy was highest when human annotators also found the text 

difficult to distinguish, suggesting that hybrid approaches combining human judgment cues 

with model signals could be beneficial. [22] introduced the Grover model, which 

simultaneously acts as a generator and detector. Trained on a large news dataset, Grover uses 

hybrid cues by modeling both linguistic style and probability distributions of text. In 

experiments on synthetic news articles, Grover achieved detection accuracy above 92%, 
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significantly outperforming conventional classifiers. Their results demonstrate that leveraging 

generation capabil- ities as part of detection provides strong anomaly signals. [21], while 

focused on robustness, also proposed a hybrid evaluation framework where detectors were 

tested against adversarially perturbed data. Their methodology integrated multiple anomaly 

indicators, including stylistic divergence and semantic coherence. Across datasets such as 

TuringBench and HC3, hybrid detectors exhibited smaller performance degradation compared 

to purely neural models, with only a 15% average drop under perturbations versus over 25% for 

baseline transformers. More recently, [23] presented a comprehen- sive benchmark across 

multiple generative models and domains, evaluating anomaly detection metrics like perplexity 

deviation alongside neural classifiers. They reported that hybrid detectors combining 

perplexity-based anomaly scores with fine-tuned RoBERTa models consistently outperformed 

either approach alone, achieving F1 improvements of 7–10 points across domains such as news 

and social media. Together, these studies illustrate that hybridization—whether by combining 

linguistic and neural features, integrating generative and discriminative models, or pairing 

anomaly scores with transformers—enhances generalization and robustness in deepfake text 

detection. Anomaly-oriented signals such as perplexity, distributional irregularities, and 

semantic divergence remain especially useful in identifying synthetic text across 

heterogeneous domains. 

Proposes a hybrid CNN-LSTM IDS for high-accuracy, real-time detection of zero-day threats, 

advancing adaptive cybersecurity [24]. Introduces a hybrid SSL framework unifying 

contrastive, generative, and clustering methods for scalable, fair AI across domains [25]. 

Presents an integrated AI-defense framework that synergizes machine learning with military 

strategy for superior threat response [26]. Leverages Cognitive Digital Twins (CDTs) to create 

self-learning AI agents for autonomous cyber threat mitigation [27]. Bridges theoretical 

computer science and practical implementation by applying ML to areas like compiler 

optimization [28]. Proposes an energy-efficient IDS framework that optimizes the trade-off 

between detection accuracy and power consumption for sustainable security in resource-

constrained edge and IoT environments [29]. Proposes a quantum-inspired machine learning 

(QIML) framework for zero-trust architectures, leveraging quantum principles like 

superposition to enhance detection accuracy and enable predictive defenses against evolving 

threats [30]. This paper proposes an explainable AI (XAI) framework for intrusion detection, 

integrating models like Random Forest with SHAP and LIME to provide high-accuracy, 

transparent threat classification without sacrificing performance[31]. 

3 Datasets and Preprocessing 

To systematically evaluate the performance of transformer-based models in deepfake text 

classification, this study utilizes three widely recognized datasets: TweepFake, TuringBench, 

and HC3. Each dataset presents unique challenges, reflect- ing different text domains, 

generative models, and linguistic characteristics. TweepFake captures informal social media 

 

 

 

 

 

 

Table 1: Comparison of deepfake text detection techniques across methodologies, datasets, 

and results 

. 

Paper Methodology Datasets Results 
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Feature-based Approaches 

[9] [2017] Linguistic + network 

features 

for fake news detection 

Social 

media/news 

datasets 

Improved detection of 

misin- 

formation compared to 

content- only baselines 

[10] [2020] Stylometric + statistical cues 

for 

generated text 

Human vs. GPT-

2 

text dataset 

Detection accuracy highest 

when humans were also 

fooled 

[11] [2020] Factual consistency checks 

to 

expose deepfake text 

EMNLP 

datasets 

factual Strong detection on 

inconsistent 

claims, accuracy dropped 

under paraphrasing 

Model-based (Deep Learning and Transformers) 

[6] [2023] Querying ChatGPT for 

zero- 

shot detection 

EMNLP bench- 

mark datasets 

Outperformed fine-tuned 

classi- 

fiers in zero-shot settings 

[8] [2024] DeTeCtive: Multi-level 

con- 

trastive learning with 

transform- ers 

GPT-2/3 outputs, 

synthetic corpora 

F1 improvements of 5–8 

points 

over baselines 

[5] [2023] RoBERTa-large across 

multiple 

domains 

Web-scale corpora ¿85% F1 in-domain; 20% 

drop 

cross-domain 

Watermarking and Cryptographic Approaches 

[16] [2023] Probabilistic watermarking 

dur- 

ing generation 

Synthetic GPT 

out- 

puts 

Reliable  watermark  

detection 

with minimal quality loss 

[18] [2023] Provable robust 

watermarking 

for generative models 

Controlled 

corpora 

Robust against

 paraphrasing; 

theoretical detection 

guarantees 

[19] [2023] Theoretical impossibility of 

un- 

detectable watermarks 

– Showed perfect undetectable 

watermarking is impossible 

under adversarial conditions 

Adversarial and Robustness-Oriented Methods 

[12] [2022] Tested 

vulnerability 

phrasing and edits 

to  para- GPT-2/3 

generated 

corpora 

Accuracy dropped by up to 

30% 

under adversarial 

perturbations 

[20] [2023] RADAR:  adversarial  

training 

for transformers 

TuringBench Robustness improved 10–

15% 

under attack 

[5] [2023] Domain robustness 

evaluation 

of detectors 

Social 

Q&A, 

news 

media, In-domain F1 ¿85%, but 

cross- 

domain dropped by 20pp 

under attack 
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[21] [2024] RAID: adversarial 

benchmark 

for detectors 

TuringBench, 

HC3 

Accuracy dropped  25% 

under 

perturbations; hybrid 

degraded less 

Hybrid and Anomaly Detection Methods 

[10] [2020] Combined human 

with model cues 

judgment GPT-2 vs. 

dataset 

human Detector accuracy aligned 

with 

human confusion patterns 

[22] [2019] Grover: genera- 

tor–discriminator hybrid 

News dataset ¿92% detection accuracy; 

strong 

anomaly signals 

[21] [2024] Hybrid evaluation with 

anomaly 

indicators 

TuringBench, 

HC3 

Hybrid detectors dropped 

15% 

under attack vs. ¿25% for 

trans- formers 

[23] [2024] Anomaly scores (perplexity) 

+ 

neural classifiers 

Multi-domain 

benchmark 

Hybrid approach improved 

F1 

by 7–10 points across 

domains 

 

content, TuringBench spans multiple domains and generators, and HC3 focuses on human-AI 

conversational text. 

TweepFake Dataset 

The TweepFake dataset was introduced by [13] with the aim of supporting research on 

deepfake text detection in short- form social media content. Unlike many benchmarks that rely 

on long-form synthetic text such as news articles or essays, TweepFake is specifically built 

from tweets, thereby capturing the stylistic brevity and linguistic irregularities that characterize 

microblogging platforms. This makes it particularly relevant for studying misinformation and 

social media manipulation scenarios. In terms of composition, the dataset contains more than 

25,000 tweets written by real users, paired with synthetic tweets generated by multiple large 

language models, including GPT-2. Each tweet in the dataset is labeled as either human-

authored or machine-generated, enabling binary classification tasks. Importantly, the dataset 

balances real and synthetic examples to avoid bias toward majority classes, making it suitable 

for training and evaluation of deepfake text detectors. The creators designed TweepFake to 

simulate real-world conditions by including diverse topics such as politics, entertainment, and 

general social discourse. Tweets were collected from verified accounts to ensure authenticity 

of human-written content, while machine-generated tweets were created by prompting models 

with similar contexts to mimic user posting behavior. This careful curation ensures that 

differences between classes are subtle, thereby making the detection task challenging. 

Empirical evaluations reported in the original study showed that traditional classifiers based on 

lexical and stylistic features achieved modest performance, while transformer-based models like 

BERT and RoBERTa outperformed feature-based baselines, though still struggled with 

adversarial edits and paraphrased tweets. Consequently, TweepFake has become a standard 

dataset for benchmarking robustness and generalization in short-text deepfake detection. 

3.1 TuringBench 

The TuringBench dataset, proposed by [14], was created as a large-scale benchmark to 

systematically test machine- generated text detection. Unlike TweepFake’s focus on short 

social media posts, TuringBench contains over 200,000 news articles and essays, both human-
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authored and generated by more than 15 different language models, including GPT-2, GPT-3, 

CTRL, XLNet, and GROVER. The benchmark was designed to test whether models can pass 

or fail the so-called Turing Test when evaluated across multiple domains. The authors 

evaluated a wide range of classifiers, including fine-tuned BERT-based architectures and 

ensemble methods. Results showed that while transformer models achieved competitive 

performance within individual domains, their accuracy degraded significantly when tested on 

unseen generators or domains, highlighting the importance of cross-domain robustness. This 

makes TuringBench one of the most comprehensive resources for assessing generalization in 

deepfake text detection. 

3.2 Human ChatGPT Comparison Corpus (HC3) 

The HC3 dataset was introduced by [15] to evaluate how closely large language models such as 

ChatGPT resemble human experts in conversational and question-answering contexts. It 

consists of around 37,000 responses covering multiple domains, including medicine, finance, 

education, and general knowledge. Each entry includes a prompt with both a human-written 

response and a ChatGPT-generated response. Unlike TweepFake or TuringBench, HC3 

directly targets the human–AI comparison in dialogue and QA settings, thereby capturing 

subtle stylistic and semantic differences. The dataset also supports multilingual analysis, 

though the English portion remains the most widely used. The original study reported that even 

trained annotators often struggled to distinguish between ChatGPT and human responses, 

achieving accuracy only marginally better than random guessing. Classifiers based on BERT 

and RoBERTa provided improvements but continued to exhibit vulnerability to adversarial 

paraphrasing and domain transfer. HC3 thus underscores the difficulty of detection in high-

quality, semantically rich AI-generated text. 

The Table2 summarizes the key properties of these datasets, including size, domain, generator 

models, average text length, evaluated models, and reported benchmark results. This comparison 

highlights the diversity of the evaluation environment 

Table 2: Comparison of Deepfake Text Datasets 

Dataset Size Domain / Type Generator 

Models 

Average Text 

Length 

TweepFake [13] 20,000+ 

tweets 

Social media,  

in- 

formal text 

GPT-2 20–35 words 

TuringBench [14] 10,000+ 

texts 

Multi-domain: 

conversational, 

structured 

GPT-2, GPT-3, 

XLNet, others 

50–120 words 

HC3 [15] 15,000+ 

Q&A pairs 

Human-AI 

conver- 

sational text 

ChatGPT 40–100 words 

 

and motivates a comprehensive, cross-dataset analysis. 

The choice of datasets in this study was guided by three main criteria. First, diversity was 

prioritized to ensure that the evaluation covered a wide range of text types, styles, and domains. 

Second, availability was considered essential, with all selected datasets being publicly 

accessible, which supports reproducibility and fair comparison. Third, representative- ness 

played a critical role, as each dataset reflects real-world contexts where deepfake text is likely 

to appear—ranging from informal social media posts to structured multi-domain content and 

human–AI conversational exchanges. Table 2 summarizes the key characteristics of the 

datasets used, including their size, domain coverage, generator models, average text length, 
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evaluated architectures, and benchmarked results. Collectively, these datasets provide a diverse 

and compre- hensive testbed for examining the generalization, robustness, and scalability of 

transformer-based deepfake text detection models. 

3.3 Preprocessing Steps 

Preprocessing is a crucial step in preparing text for classification, ensuring that the input is 

clean, standardized, and compatible with transformer architectures. In this work, all text 

samples were subjected to a systematic cleaning process: usernames were replaced with 

placeholders, URLs substituted with markers, and emojis converted into descriptive text 

through demojization. Additional refinements included removing excess whitespace, stripping 

punctuation and numerical digits, and converting all text to lowercase for consistent 

representation. After cleaning, tokenization was carried out according to the requirements of 

each transformer model (BERT, RoBERTa, ALBERT, or DistilBERT). This process 

transformed the text into tokens, applied attention masks, and standardized input lengths using 

padding or truncation. To address class imbalance and minimize bias, datasets were carefully 

examined, and oversampling or undersampling was applied when necessary to ensure a 

balanced distribution of human-written and AI-generated text. The HC3 dataset required 

special treatment due to its structure, which pairs a question with both a human-written and a 

machine-generated response. For binary classification, each answer was treated as an 

independent sample: human responses were labeled as human, while AI responses were 

labeled as synthetic. To provide richer context, the corresponding question was optionally 

concatenated with the answer prior to processing, enabling the model to leverage the semantic 

relationship between prompt and response. Once adapted, these samples underwent the same 

preprocessing pipeline as the other datasets, ensuring consistency across the evaluation 

framework. 

4 Methodology 

This study evaluates the performance of four transformer-based language models: i) BERT, ii) 

RoBERTa, iii) ALBERT, and iv) DistilBERT on the preprocessed deepfake text datasets 

described in section 3.4. Each model is fine-tuned for binary classification, distinguishing 

human-written from AI-generated text, using the Hugging Face Transformers library. 

Preprocessed datasets are tokenized with the model-specific tokenizer, applying truncation 

and padding to a maximum sequence length of 256 tokens to balance memory efficiency with 

input coverage. The datasets are formatted in PyTorch tensors for compatibility with the 

training framework. Each model was independently fine-tuned using the Trainer API. Training 

was performed for a maximum of fifteen epochs with early stopping, monitoring validation 

accuracy with a patience of two epochs to reduce overfitting. A learning rate of 2 × 10−5 was 

employed, with a per-device batch size of sixteen for both training and evaluation. To enhance 

stability and efficiency, weight decay was set to 0.01, and gradient accumulation was applied 

over two steps. 

At the conclusion of each epoch, evaluation and checkpointing were conducted, retaining only 

the model that achieved the highest validation accuracy for further analysis. Final performance 

was assessed on the test split of each dataset using widely accepted metrics, including 

accuracy, precision, recall, and F1-score. This experimental design provided a systematic and 

fair comparison of transformer models, allowing for the identification of both strengths and 

limitations in detecting deepfake text across varied domains. The results offer practical insights 

for model selection and highlight areas where improvements in detection methods are still 

required. 

4.1 Transformer Models for Deepfake Text Detection 

This work examines four transformer-based architectures that are widely adopted in natural 

language processing: BERT- base-uncased, RoBERTa-base, ALBERT-base-v2, and 
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DistilBERT-base-uncased. Collectively, these models capture a balance between accuracy, 

robustness, and computational efficiency, making them strong candidates for deepfake text 

detection. While all are grounded in the transformer encoder framework proposed by 

Vaswani et al. [32], they differ in their pretraining objectives, optimization strategies, and 

parameter efficiency. The subsections that follow provide a detailed overview of each model, 

highlighting their training principles and the mathematical formulations that define their unique 

characteristics. 

4.1.1 BERT-base-uncased 

Bidirectional Encoder Representations from Transformers (BERT) [33] is a transformer-based 

encoder designed to capture bidirectional context by training on large text corpora. Its 

pretraining involves two key objectives: Masked Language Modeling (MLM) and Next 

Sentence Prediction (NSP). The bert-base-uncased configuration consists of 12 layers with 12 

self-attention heads per layer, a hidden size of 768, and roughly 110 million parameters. 

In the MLM task, a portion of input tokens is randomly masked, and the model is trained to 

recover these missing tokens using contextual information from both directions. The 

corresponding loss function can be expressed as: 

 

LMLM = − 
Σ 

log P
 
xi | x\M ; θ

 
,(4.1) 

i∈M 

 

where M is the set of masked positions, xi denotes the true token at position i, and θ 

represents model parameters. 

In addition, the NSP task is a binary classification problem to determine whether a sentence 

B follows a sentence A. Its loss is given by equation 4.2 where y is the ground truth label, 1 

if sentence B follows A, 0 otherwise. 

 

LNSP = −
h

y log P (IsNext) + (1 − y) log P (NotNext)
i
,(4.2) 

 

4.1.2 RoBERTa-base 

Robustly Optimized BERT Pretraining Approach (RoBERTa) [34] improves upon BERT by 

removing the NSP objective, employing dynamic token masking, and training on larger 

datasets. Its architecture mirrors BERT-base with 12 layers, 768 hidden size, 12 heads but with 

approximately 125M parameters due to different optimization strategies. The pretraining 

objective is solely based on MLM, with dynamic masking patterns that change across training 

epochs. The loss function is defined as: 

 

LRoBERT a = − 
Σ 

log P
 
xi | x\Mt ; θ

 
,

 

(4.3) 

i∈Mt 

 

where Mt represents the set of dynamically masked tokens at training step t. Unlike Equation 

4.1, the dynamic masking ensures greater variability and better generalization. 

4.1.3 ALBERT-base-v2 

ALBERT (A Lite BERT) [35] reduces memory consumption and improves parameter efficiency 

via two main techniques: 
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(i) parameter sharing across layers, and (ii) factorized embedding parameterization. The albert-

base-v2 variant reduces the parameter count from over 100M in BERT to about 12M, making 

it highly efficient. Instead of directly mapping tokens to the hidden dimension H, ALBERT 

introduces a two-step embedding: 

 

E ∈ RV ×E,P ∈ RE×H,(4.4) 

 

where V is the vocabulary size, E is the embedding dimension (E ≪ H), and P projects 

embeddings into the hid- den space. ALBERT replaces NSP with Sentence Order 

Prediction (SOP), designed to better capture discourse-level information. The SOP loss is 

defined in equation 4.5 where y indicates whether the sentence pair is in the correct order. 

LSOP = −
h
y log P (CorrectOrder) + (1 − y) log P (Swapped)

i
,(4.5) 

 

4.1.4 DistilBERT-base-uncased 

DistilBERT [36] is a smaller, faster, and lighter version of BERT that retains around 97% of 

BERT’s performance while being 40% smaller and 60% faster. The distilbert-base-uncased 

model consists of 6 layers, 12 heads, and approximately 66M parameters. It is trained via 

knowledge distillation, where the student model (DistilBERT) learns from the teacher model 

(BERT). The distillation loss is defined as the Kullback-Leibler (KL) divergence between the 

teacher and student logits: 

 

LKD = τ 2 · KL
 
σ(zt/τ )  σ(zs/τ )

 
,(4.6) 

where zt and zs represent teacher and student logits, σ is the softmax function, and τ is the 

temperature parameter. 

 

Table 3: Comparison of Transformer Models Used in This Study 

Model Layers Hidden Size Parameters Pretraining Objectives Efficiency 

BERT-base- 

uncased 

12 768 ∼110M MLM + NSP (Eq. ??) Standard baseline 

RoBERTa-base 12 768 ∼125M MLM with dynamic 

masking (Eq. 4.3) 

Higher accuracy, 

more data 

ALBERT-base-v2 12 768 ∼12M MLM + SOP (Eq. ??) Parameter-

efficient 

DistilBERT-base- 

uncased 

6 768 ∼66M Distillation + MLM 

(Eq. ??) 

Faster, lightweight 

 

The four models presented in Table 3 provide a balanced foundation for evaluating deepfake 

text detection across accu- racy, efficiency, and scalability. BERT-base serves as the benchmark 

model, offering strong contextual representations that ensure reliable performance across 

datasets. RoBERTa-base extends this strength by refining pretraining strategies and us- ing 

larger corpora, which, as confirmed in our experiments, translated into the highest accuracy 

among the tested models. ALBERT-base-v2, while more compact due to parameter-sharing 

and factorization techniques, maintained competitive accuracy, demonstrating that efficiency 

can be achieved without a major loss in performance. DistilBERT-base-uncased, though 

slightly less accurate, proved valuable in scenarios where computational speed and reduced 

resource usage are critical, such as real-time detection on social media streams. Collectively, 

these results highlight the trade-offs between accuracy and efficiency, showing that while larger 
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models excel in raw performance, lighter architectures offer significant advantages for practical 

deployment in constrained environments. 

5 Experimental Results 

Table 4 reports the performance of four transformer-based models—BERT-base-uncased, 

RoBERTa-base, ALBERT-base- v2, and DistilBERT-base-uncased—evaluated on three 

benchmark datasets: TweepFake, TuringBench, and HC3. The comparison is based on four 

key metrics: accuracy, precision, recall, and F1-score. 

On the TweepFake dataset, RoBERTa-base stood out with the strongest results, achieving an 

accuracy and F1-score of 

0.97. BERT-base-uncased and ALBERT-base-v2 performed at a comparable level, with F1-

scores of 0.935 and 0.944, highlighting their reliability in handling short and stylistically varied 

text. DistilBERT-base-uncased, although advanta- geous in terms of efficiency and speed, 

showed lower effectiveness with an F1-score of 0.885. These findings indicate that models with 

richer contextual encoding, such as RoBERTa, are better suited for identifying synthetic text in 

the dynamic and compact environment of social media. Performance on TuringBench was 

slightly lower overall compared to Tweep- Fake. Again, RoBERTa-base led with an F1-score 

of 0.925, followed by BERT-base-uncased at 0.913. ALBERT-base-v2 performed moderately 

well (0.896), while DistilBERT-base-uncased remained the weakest performer (0.883). The 

nar- rower margins between models on this dataset indicate that TuringBench poses a more 

balanced challenge, where architec- tural differences yield smaller performance gains. The HC3 

dataset proved to be the most challenging across all models, with performance metrics notably 

lower than on the other two datasets. RoBERTa-base again outperformed the others, achieving 

an F1-score of 0.872. BERT-base-uncased followed with 0.855, while ALBERT-base-v2 and 

DistilBERT-base- uncased dropped further to 0.834 and 0.785, respectively. The decline in 

scores highlights the difficulty of distinguishing human- from machine-generated responses in 

conversational or question–answering contexts, where stylistic cues are sub- tler. Across all 

datasets, RoBERTa-base consistently achieved the best results, confirming its robustness in 

deepfake text classification tasks. BERT-base-uncased and ALBERT-base-v2 performed 

competitively, though with slight variations depending on dataset characteristics. DistilBERT-

base-uncased, while computationally efficient, consistently underper- formed relative to the 

other models, suggesting a trade-off between efficiency and detection accuracy. Importantly, 

the results demonstrate that model performance is dataset-dependent: models that excel on 

TweepFake do not necessarily achieve the same margins on HC3. This reinforces the need for 

evaluations across multiple datasets rather than relying 
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Figure 2: Accuracy heatmap illustrating the performance 

 

on a single benchmark, as doing so provides a more reliable understanding of model strengths 

and weaknesses in diverse contexts. 

The experimental findings reveal several noteworthy patterns in deepfake text classification. 

To begin with, RoBERTa- base consistently outperformed the other models across all datasets, 

underscoring its strength in capturing subtle linguistic cues. Its richer contextual embeddings 

appear to generalize more effectively across diverse domains, ranging from short, informal 

social media posts in TweepFake to structured prompts in TuringBench and conversational 

exchanges in HC3. BERT-base-uncased and ALBERT-base-v2 achieved competitive 

performance, though their results were less consistent across datasets. In particular, 

ALBERT’s parameter-sharing and compression strategies improved efficiency but did not 

always lead to higher accuracy, suggesting that some representational capacity may be lost—

capacity that is often essential for detecting adversarial or synthetic text. DistilBERT-base-

uncased performed well in terms of computational efficiency, but its accuracy lagged behind 

the larger models. This points to a clear trade-off between speed and reliability: while 

lightweight models are attractive for environments with limited resources, their reduced 

robustness makes them less suitable for high-stakes detection tasks. 

To illustrate these differences more clearly, we present a heatmap of accuracy values in Figure 

2. The heatmap encodes performance on TweepFake, TuringBench, and HC3 using a blue 

color gradient, offering a straightforward visual com- parison of how each model performs 

across the three datasets.Darker shades indicate higher accuracy, thereby allowing quick 

identification of performance patterns. For instance, RoBERTa-base consistently exhibits the 

highest accuracy across all datasets, as reflected by the darker color intensity, while 

DistilBERT-base-uncased demonstrates comparatively lower accuracy levels. This 

visualization facilitates an intuitive understanding of the performance distribution, making it 

easier to distinguish strong and weak performers in a cross-dataset evaluation setting. The 

figure 3 illustrating accuracy across models and datasets provides a clear comparative view of 

how different transformer-based architectures perform on TweepFake, TuringBench, and HC3. 

Among the evaluated models, RoBERTa-base consistently achieves the highest accuracy, 

reaching 0.97 on TweepFake, 0.925 on TuringBench, and 0.873 on HC3. In contrast, 

DistilBERT-base-uncased records the lowest accuracy values, with 0.88, 0.884, and 0.786 on 

the respective datasets, highlighting the performance trade-off associated with model 

compression. BERT-base-uncased and ALBERT-base-v2 exhibit competitive results, gen- 

erally outperforming DistilBERT while remaining slightly below RoBERTa. Overall, the 
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graph demonstrates that while dataset complexity affects all models, RoBERTa exhibits 

superior robustness, particularly in maintaining higher accuracy across domains. 

The dataset-level differences are equally revealing. TweepFake yielded the highest scores 

overall, likely due to the rela- 

 

 
 

Figure 3: Accuracy comparison of transformer-based models across datasets. 

tively distinct stylistic cues present in synthetic tweets. TuringBench proved more challenging, 

narrowing the performance gap between models and underscoring the difficulty of detecting 

machine-generated text in longer, more structured for- mats. HC3 emerged as the most difficult 

benchmark, with all models showing a marked decline in performance. This suggests that 

conversational and question–answering contexts blur the boundary between human and 

machine writing, making detection inherently harder. Taken together, these findings reinforce 

the importance of evaluating models across multiple datasets rather than relying on a single 

benchmark. A model that performs strongly on one dataset may not gener- alize to others, and 

conclusions drawn from narrow evaluations risk overstating robustness. By systematically 

comparing models on diverse datasets, this study provides a more reliable picture of their 

strengths and weaknesses, aligning directly with the stated objective. 

 

6 Conclusion and Future Work 

This study presents a comprehensive evaluation of four transformer-based models—BERT-base-

uncased, RoBERTa-base, ALBERT-base-v2, and DistilBERT-base-uncased—across three 

widely used datasets for deepfake text detection: Tweep- Fake , TuringBench , and HC3 . The 

results show that RoBERTa-base consistently delivered the best perfor- mance across most 

metrics, confirming its robustness and adaptability in detecting synthetic text. BERT-base-

uncased also performed strongly with stable results, while ALBERT-base-v2 offered a practical 

balance between efficiency and accu- racy thanks to its parameter-sharing design. DistilBERT-

base-uncased, although less accurate, stood out for its lightweight structure and reduced 

computational demands, making it a good choice for scenarios such as mobile deployment or 

real- time monitoring where efficiency is essential. Together, these outcomes highlight the 

trade-off between accuracy and efficiency and emphasize the importance of choosing models 

that fit the specific constraints and objectives of real-world applications. Despite these 

strengths, key challenges remain. Findings from TweepFake show that classifiers often fail to 
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generalize to unseen text generators, pointing to the need for broader and more representative 

datasets. Similarly, TuringBench  revealed considerable performance variation across 

generators, underlining the importance of develop- ing robust cross-domain and zero-shot 

detection strategies for practical deployment. Similarly, HC3 highlighted the difficulty of 

distinguishing conversational responses from ChatGPT outputs, illustrating the growing 

challenge of detect- ing text that closely mimics human writing. These findings suggest that 

while current benchmarks are valuable, they still fall short of reflecting the complexity of 

practical detection scenarios. Looking ahead, future research should prioritize the 

development of larger and more diverse datasets that span multiple domains, languages, and 

generative models to 

 

Table 4: Performance comparison of models across datasets. 

Dataset Model Accuracy Precision Recall F1-score 

 BERT-base- 0.93 0.93 0.94 0.935 

TweepFake uncased 

RoBERTa- 

 

0.97 

 

0.97 

 

0.97 

 

0.97 

 base     

 ALBERT- 0.945 0.941 0.948 0.944 

 base-v2     

 DistilBERT- 

base-uncased 

0.88 0.88 0.89 0.885 

 BERT-base- 0.913 0.909 0.916 0.913 

TuringBench uncased 

RoBERTa- 

 

0.925 

 

0.921 

 

0.928 

 

0.925 

 base     

 ALBERT- 0.897 0.892 0.901 0.896 

 base-v2     

 DistilBERT- 

base-uncased 

0.884 0.88 0.887 0.883 

 BERT-base- 0.856 0.849 0.862 0.855 

HC3 uncased 

RoBERTa- 

 

0.873 

 

0.867 

 

0.878 

 

0.872 

 base     

 ALBERT- 0.834 0.829 0.840 0.834 

 base-v2     

 DistilBERT- 

base-uncased 

0.786 0.780 0.790 0.785 
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mitigate dataset-specific biases. Advances in adversarial training and semantic-level analysis 

could improve resilience against perturbations and stylistic manipulations, while explainable 

AI methods would enhance the interpretability and trustworthiness of detection systems, 

particularly in sensitive domains such as journalism, education, and social media. Furthermore, 

multimodal detection approaches that integrate text with metadata, temporal patterns, and 

network-level signals may provide stronger defenses against increasingly sophisticated 

generative systems. Finally, the establishment of standardized cross-domain evaluation 

protocols and heterogeneous benchmarks will be essential to ensure that detection models are 

assessed under conditions that mirror real-world complexity rather than limited, curated 

datasets. 

By addressing these challenges, the field can move toward the development of robust, adaptive, 

and transparent deepfake text detection systems. Such frameworks would not only strengthen 

defenses against the evolving landscape of generative models but also contribute to the broader 

goal of safeguarding trust and integrity in digital communication. 
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