
CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.03 No.03 (2025)

1329

IMPACT OF DESIGN PATTERNS AND ARCHITECTURE ON QUALITY

ATTRIBUTES

Aneeqa Rauf1 , Hamera Bibi2 , Saleem Zubair3, Sabah Arif4

Aneeqa Rauf

Department of Software Engineering,

SuperiorUniversity, Lahore,

Punjab, Pakistan;

Corresponding Author Email: : raufaneeqa920@gmail.com

Hamera Bibi

Department of Software Engineering,

SuperiorUniversity, Lahore,

Punjab, Pakistan;

Corresponding Author Email: hamerabibi6@gmai.com

Saleem Zubair

Department of Computer Science and Information Technology,

SuperiorUniversity, Lahore,

Punjab, Pakistan;

Corresponding Author Email: saleem.zubair@gmail.com

Sabah Arif

Department of Computer Science and Information Technology,

UCP, Lahore,

Punjab, Pakistan;

Corresponding Author Email: Sabah.arif@ucp.edu.pk

Abstract:
Significant software quality qualities corresponding execution, maintainability, modifiability, scalability, and

security are determined in a important way for software architecture and design patterns. The contemporary

research assumes a comprehensive evaluation and comparison of renowned architectural styles and design

patterns, examining the exact impact they take on these characteristics across a range of software system

categories. The tutoring discovers how different architectural choices directly influence system behavior,

structural organization, and long-term software sustainability by mingling the findings of twenty wisely selected

academic and industrial case studies.
The study finds the best operative combinations that match the desired attributes by concentrating on architectural

styles similar layered architecture, microservices, and service-oriented architectures as well as design patterns

like Singleton, Observer, and Model-View-Controller (MVC). It senses dependences and trade-offs that create up

in real-world design situations critically.
The research highlights in what way context-sensitive decisions concerning architecture are and how frequent

kinds of features, such as system complexity, domain requirements, and lifecycle thoughts, impact them.

Scalability, fault isolation, and continuous distribution are through easier by modular and distributed patterns

like microservices, but deployment and maintenance are recurrently made more difficult and expensive. In

alteration, layered or monolithic architectures offer manageableness and simplicity, but they may restrict

flexibility and scalability in reaction to changing needs.
The development of a structured classification that links particular design decisions to their observed quality

outcomes is one of this study's main contributions. This contributions architects to improved understand causeand-

effect relationships in architectural planning.
In adding, it highpoints how significant component interactions, interface contracts, and design documentation

are to maintaining architectural integrity and addressing quality standards. The framework documents

development teams and software architects to grace based on evidence, strategic decisions that indorse long-term

system evolution in adding to momentary goals for the project.
In the final analysis, the assumptions highlight how vigorous it is to use context-aware and adaptive design

methods. Architects are encouraged to evaluate individually system's requires independently and implement

mailto:raufaneeqa920@gmail.com
mailto:hamerabibi6@gmai.com
mailto:Sabah.arif@ucp.edu.pk

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.03 No.03 (2025)

1330

patterns that best meet its unique performance, security, and maintainability goals slightly than strictly following

to established guidelines.

Keywords:

Software Architecture – Design Patterns – Quality Attributes – Modifiability – Scalability –

Maintainability – Microservices – Layered Architecture – Observer Pattern.

Introduction:

It has become documented in present-day software engineering that software architecture and

design patterns perform an essential part in significant system quality. They action as strategic

tools for addressing important non-functional requirements, including maintainability,

scalability, reliability, testability, and performance, and go far beyond getting simply structural

blueprints.[1] The complexity, scale, and operational demands present in contemporary

software systems make it increasingly important to mark accurate architectural and design

choices early in the development lifecycle. These choices have a substantial impact on a

system's future sustainability, cost effectiveness, and user satisfaction in addition to its

powerdriven viability.

Selecting suitable architectural styles and design patterns that efficiently correspond with

desired quality attributes ruins one of the ongoing challenges, despite decades of research

progressions and broad industry adoption.[2]

Because trade-offs among attributes—like flexibility in contradiction of performance or

simplicity versus extensibility—are generally expected the extensive range of software

contexts and altering technological landscapes create this decision-making process even more

difficult.

Software architecture, as defined by IEEE Standard 1471, is the fundamental framework of a

system as uttered by its essential parts, the connections between them, and the design and

development principles that direct them. Quality qualities are substantial variable quantity that

choose system excellence in this architectural framework.[3] When systems are used in

dynamic or mission-critical environments, attributes like availability, testability, performance,

security, and modifiability frequently have greater long-term weight than modestly functional

correctness. Outstanding to retrofitting quality later is risky and resource-intensive,

architecture-centric design practices prioritize these features from the establishment stages of

software development.

By offering tried-and-true, reusable answers to typical design issues precisely contexts, design

patterns enhance architectural strategies. Best practices that enhance structural clarity and

behavioral obviousness can be found in patterns such as Singleton, Factory, Observer,

Decorator, and Model-View-Controller (MVC).[1] They provision maintainable and extensible

software through promoting modularity, code reusability, and design consistency when

employed sparingly. However, the intended paybacks of design patterns can be cooperated by

their careless or incorrect implementation, which can result in design ant patterns that show up

as unnecessary complexity, decreased flexibility, or performance degradation.

In order to achieve transformed quality attributes, this study examines the complex

communications between the styles of architecture and design patterns. It purposes to assist

practitioners in making knowledgeable decisions that strike a balance between immediate

project constraints and long-term quality consequences through studying real-world software

systems and academic visions.

Architecture and design patterns collaborate in a complex way. Patterns purpose at a micro or

mid-level, supporting architectural decisions, while architecture offers the macro-level

perspective. For example, the MVC pattern progresses modifiability and the parting of

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.03 No.03 (2025)

1331

concerns in a layered architecture. In a similar vein, circuit breakers and service registry

patterns assist microservice architecture achieve self-motivated detection and resilience. A

single design method is not sufficient because of the complex nature of quality attributes.

Systems may need trade-offs, like increasing complexity to ensure scalability or disturbing

performance to gain modifiability. This highlights how important it is to select patterns based

on context and suggestion. Besides, the architectural and design requirements modify

significantly as software systems become more diverse across cloud, fixed, and mobile

environments.

A total of twenty research papers, technical reports, and observed studies looking at the

association between architecture, patterns, and quality attributes are systematically inspected

in this paper in instruction to discourse these issues. It appearances into how various pattern

applications and architectural styles affect specific quality issues across fields.

Objectives:

● To estimate architecture-pattern combinations in various system scenarios.

● To identify trade-offs between conflicting quality (e.g., performance vs. modifiability).

● To build a structured framework that links design and architectural decisions to

highquality results.

● For assessing how different software design patterns and architectural styles affect

important quality attributes like testability, performance, maintainability, and

scalability.

1.1.INTRODUCTION DIAGRAM

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.03 No.03 (2025)

1332

Figure 1: Introduction Diagram of Prioritization Technique Framework

Literature Review:

The significance of architectural patterns and design choices in influencing non-functional

quality attributes like performance, maintainability, modifiability, reusability, scalability, and

security has been underlined repeatedly in software engineering research. In adding to

providing reusable solutions for reoccurring design issues, architectural styles and design

patterns are intentional tactics used to match systems with particular quality attribute

objectives. [1]

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.03 No.03 (2025)

1333

In a thorough inspection of developer conversations on Stack Overflow, Bi et al. found that

contextual elements and desired quality outcomes—like scalability, flexibility, and

modifiability—have a significant impact on architectural choices. [2] Their findings support

the notion that architectural decisions are rarely made in a void by indicating that developers

are very sensitive to situational requirements when choosing architecture styles and patterns.

Similarly, Wedyan and Abufakher [3] conducted a systematic evaluation of the literature to

find out how design patterns affect software quality. According to their research, issues like

class size, documentation quality, and pattern scattering have a big impact on how effective

patterns are. Inadequate design pattern documentation or poor employment can make it more

difficult to understand the system and make it less maintainable.

The relationship between architectural patterns and quality attributes in initiative systems was

investigated by Calero, Lago, and associates [4]. According to their research, pattern selection

is significantly influenced by a number of factors, including the project's development phase,

team experience, and the pre-existing technical infrastructure, in calculation to quality

requirements. This emphasizes how complex architectural decision-making is.

In a related study, Farshidi et al. [5] stressed the importance of connecting design patterns to

architectural knowledge and recommended meticulous documentation of these choices in order

to support architectural traceability. They maintained that the constancy and predictability of

design decisions in subsequent projects are improved by reusable architectural knowledge.

Qureshi et al. [6] investigated the negative consequences of architectural anti-patterns and

found that constructs like God Objects and Blob Components significantly hinder modifiability

and clarity, particularly in large-scale systems. These anti-patterns have the potential to

obfuscate system intent and embellish complexity, which will result in poor performance and

reduced maintainability.

An empirical study by Foutse Khomh and associates [7] questioned the notion that well-liked

patterns like Flyweight and Abstract Factory invariably result in increased modularity and

scalability. According to their research, these patterns can really increase complexity rather

than lessen it if they are misused. This emphasizes how using patterns requires careful

background consideration.

A framework for assessing architectural sustainability was put forth by Koziolek [8], who

introduced important metrics like permanence, changeability, and adaptability as markers of a

system's long-term quality. Architects can evaluate the forward compatibility of their design

choices with the help of these metrics.

Farshidi et al. [9] created a tool-supported method that uses structured decision processes to

map patterns to quality attributes in order to assist well-informed decision-making. This

approach improves decision traceability

The evolution of design patterns across software forms was examined by Garcia et al. [10].

They noticed that in order to accommodate evolving requirements, developers usually expand

or change patterns like Strategy and Observer. The patterns' dynamic performance suggests

that they are not fixed solutions but rather change to meet the demands of the system. Industry-

derived recommendations for matching design patterns to long-term technical and business

objectives were provided by Bosch [11].

When creating scalable software architectures, he underlined the importance of modularity,

adaptability, and design traceability. Present methods were criticized by Ali et al. [12] for

unevenly assessing quality attributes like scalability and maintainability across projects. To

guarantee a more precise evaluation of architectural choices, they put forth a methodical

approach.

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.03 No.03 (2025)

1334

According to Fokaefs et al. [13], coherent and well-encapsulated patterns typically improve

reusability and maintainability. Nonetheless, it has been demonstrated that an overabundance

of pattern dispersion across the codebase damages software quality.

Additional empirical research, such as that presented by the author and associates at the WICSA

conference [14], verified that the influence of architectural styles such as MVC and SOA on

usability and performance varies depending on the context. This emphasizes how important

situational awareness is when choosing an architecture.

In order to balance functional and non-functional requirements, Galster et al. [15] investigated

how architects prioritize quality attributes within particular project contexts. Their results are

in favor of using tradeoff analyses to inform architectural choices in the early phases of design.

In order to model system behavior under different constraints, Arcelli et al. [16] proposed a

scenario-based evaluation framework, representative the effectiveness of architectural

prototyping in identifying real-world pattern impacts.

To manage trade-offs between attributes like availability, modifiability, and performance,

Kazman et al. [17] developed the Architecture Tradeoff Analysis Method (ATAM), a

structured framework that syndicates technical and business objectives.

A thorough framework for software architecture documentation was provided by Barbacci and

associates [18], which outlined best performs for quality attribute modeling, design

justification, and decision reasoning.

Kazman et al. [19] also underlined how crucial it is to incorporate architectural evaluations into

the early stages of design and explicitly model quality requirements. Later in the development

lifecycle, this proactive approach helps prevent expensive rework.

In order to help developers comprehend the wider consequences of their choices, MIS research

[20] emphasized the necessity of integrating pattern repositories with quality attribute modeling

tools. More thoughtful and strategic architectural practices are supported by this integration.

Finally,architecture selection must be empirical and iterative. Past architectural decisions

contribute to a knowledge base that informs future projects through structured reuse and

traceability.

Emerging Themes and Gaps

Regardless of the abundance of qualitative findings, there are few quantitative comparisons,

especially in large-scale, real-time, or dynamic environments. These are some recurrent themes

and gaps that have surfaced throughout the reviewed literature: • Selecting appropriate

architectural patterns to align with targeted quality attributes has a clear strategic value. There

is no general framework for mapping patterns to quality attributes, indicating the need for more

empirical and tool-supported research; current tools often lack the automation and contextual

intelligence necessary to support architectural decision-making under restraints. When taken

as a whole, these studies support the need to contextualize, methodically document, and assess

architectural patterns using evidence-based methodologies. This guarantees their efficient use

in a variety of dynamic software environments.

Comparative Analysis:

S.No Study Title
Architecture/Patter

n Used

Quality

Attributes

Targeted

Key Findings Research Gap

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.03 No.03 (2025)

1335

1 Architecture

Patterns and

Design

Contexts

Layered, MVC,

Microservices

Modifiability,

Performance

Developers

choose patterns

based on

experience.

No clear tool to

guide selection.

2

SLR on

Architecture

& Quality

Microservices, SOA,

Layered

Scalability,

Security

Patterns affect

quality

differently;

trade-offs

exist.

Lacks real-world

testing.

3 Role of

Design

Patterns

Factory,

 Singleton,

Observer

Reusability,

Flexibility

Strategy and

Observer help

flexibility.

More broad

validation needed.

4

Design

Patterns

Impact

Factory,

 Adapter,

Composite

Maintainability,

Reusability

Factory

improved

structure;

Composite

added

complexity.

Long-term effects

not explored.

5

ALMA Study
No pattern,

Architecture analysis
Modifiability

Helps find

risky design

areas early.

No pattern-specific

focus.

6
Design

Decisions &

Quality

Layered, Pipes &

Filters

Performance,

Modifiability

Pipes & Filters

improved data

flow.

No tool support for

early decisions.

7

Quality-

Driven Design

SOA, Modular,

Client-Server

Scalability,

Reliability

SOA boosts

flexibility and

scale.

Doesn’t

 handle goal

conflicts.

8
Architecture

Patterns vs

Quality

Microservices,

Eventdriven

Security,

Scalability

Microservices

scale well but

add risks.

More practical case

studies needed.

9
Guidelines for

Quality
Layered, Modular Maintainability

Clear design

helps quality.

No real

 project

testing.

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.03 No.03 (2025)

1336

10

Patterns vs

Attributes

Strategy, Composite,

Visitor

Flexibility,

Understandabilit

y

Strategy is

useful;

Composite

confuses.

No common way to

measure impact.

11

Slideshare

(Educational)
MVC, SOA

Usability,

Security

MVC helps UI,

SOA improves

services.

No research data,

only overview.

12

Tactics &

Patterns

Proxy, Factory,

Retry

Reliability,

Security

Proxy + Retry

improved faults.

Tactic-pattern links

incomplete.

13

A Method for

Understandin

g Quality

Attributes in

Software

Architecture

Structures

Layered, Pipes-and-

 Filters

Maintainability,

Performance

Introduces

scenariobased

analysis

 to

relate

architecture

to quality

attributes.

Lacks tool

support and

scalability in

industrial

contexts.

14

A Survey of

Software

Architecture

Evaluation

Methods

Based on

Quality

Attributes

Component-Based,

Layered, Client-

 Server

Modifiability,

Scalability,

Usability

Highlights

gaps in

current

evaluation

methods and

emphasizes

qualitydriven

architecture.

Limited

attention to

runtime

adaptability and

decision support.

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.03 No.03 (2025)

1337

15

Exploring Quality

Attributes

Using

Architectural

Prototyping

Client-Server,

 SOA

Reliability,

Usability,

Availability

Prototyping

facilitates

early-stage

validation of

quality

attributes.

Techniques lack

generalizability

beyond case-

specific domains.

16

Evaluating the

Quality of

Architectures

Using

Scenarios

Scenario-Driven

 (e.g., ATAM)

Flexibility,

Portability,

Modifiability

Emphasizes

architecture

assessment

using use-

case-based

scenarios.

Depends on

expert elicitation;

lacks

automation for

large systems.

17 Tactics &

Patterns

Proxy, Factory,

Retry

Reliability,

Security

Proxy + Retry

improved faults.
Tactic-pattern links

incomplete.

18

Architecture

Evaluation for

SoftwareIntensive

Systems

SAAM,

ATAM

Interoperability,

Changeability,

Performance

Establishes

structured

trade-off

analysis

methodologies

for evaluating

multiple QAs.

Mostly limited to

 SEI

 case

studies; broader

validation needed.

19

Software

Architecture

Quality

Attributes

Knowledge

Repository

Repository-Driven

(QAW, ATAM

mappings)

Modifiability,

Testability,

Reliability

Provides a

reusable

knowledge base

 linking

architecture to

quality

outcomes.

No

 integrate

d

decisionsupport

tools for

developers.

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.03 No.03 (2025)

1338

Methodology:

The Journalism Items for Systematic Reviews Exploring and synthesizing findings from the

body of literature on the impact of software architectural styles and design patterns on software

quality attributes was the aim. To compile findings, investigate architecture-quality

relationships, and enable comparative evaluation, a qualitative, multi- stag methodology was

applied.

Methodology Framework:

20

Capturing

Quality

Requirements in

 Software

Architecture

UML-Based,

Component-Oriented

Performance,

Fault Tolerance

Tolerance

Proposes UML

extensions to

express and

document QA

trade-offs

effectively

Scalability

concerns in

modeling complex

systems; limited

industrial usage

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.03 No.03 (2025)

1339

Figure 2: Overview of Methodology Phases

The four main research questions listed below were intended to be addressed by the

methodology.The following research questions serve as the framework for the study and guided

the review process:

RQ1: How do different design patterns and architectural styles (such as layered,

serviceoriented, and microservices) impact quality attributes like performance, scalability, and

maintainability?

RQ2: When trying to balance competing priorities like security versus performance or

efficiency versus modifiability, what kinds of trade-offs exist between quality attributes and

architectural choices?

RQ3: How much is the relationship between architectural styles and software quality mediated

by contextual factors such as stakeholder requirements, system scale, and application domain?

RQ4: Can the predictability and traceability of quality outcomes in large-scale software

applications be improved by combining architectural styles with design patterns?

The purpose of these questions is to help consultants make quality-based strategic architectural

decisions.

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.03 No.03 (2025)

1340

B. Method of Search

Leading digital libraries such as IEEE Xplore, ACM Digital Library, ScienceDirect,

SpringerLink, Scopus, and Google Scholar were all methodically searched. Finding academic

publications that addressed architectural styles, design patterns, and their impact on quality

qualities was the main goal.

String of Search Terms

Among the keywords in the main search query were:

(“software architecture” OR “architectural style” OR “design pattern”) AND (“software

quality” OR “performance” OR “maintainability” OR “scalability” OR “modifiability”) AND

(“microservices” OR “layered” OR “observer” OR “strategy” OR “MVC” OR “factory”) The

requirements of each database were taken into consideration when adapting this string. To

guarantee thorough literature coverage, both forward and backward snowballing strategies were

applied.

C. Inclusion and Exclusion Criteria

The following criteria were established for inclusion:

• Research released from 2015 to 2025

• Pay attention to design patterns, architecture styles, and software quality attributes. Peer-

reviewed conference papers or journal articles with full manuscript available in English

Among the exclusion criteria were:

• A focus that is irrelevant to architecture or quality attributes

• Content that is not peer-reviewed, such as tutorials, editorials, or duplicates across databases

D. Review Process

The SLR used a four-phase review procedure:

Data collection and source selection: Initially, 1,476 articles were retrieved. 122 studies were

selected for full-text review following intellectual screening and duplicate removal. Eightytwo

of these satisfied all inclusion requirements. Increasing was used to add 15 more papers,

making 97 final papers for analysis.

Data Extraction and Classification: Every study was studied to document quality attributes,

design patterns (e.g., MVC, Factory, Strategy), and architectural styles (e.g., layered,

microservices). These were then divided into:

● Structural: e.g., layered, MVC

● Service-based: e.g., SOA, microservices

● Behavioral: e.g., Observer, Strategy, Factory Comparative Analysis:

To compare architecture-pattern mixtures with quality attributes like fault isolation, scalability,

testability, and modifiability, a matrix was created. The effectiveness of each combination was

evaluated qualitatively as high, medium, or low. This matrix shelter light on common tradeoffs

and new trends.

Synthesis of the Framework:

In order to link architecture-pattern collections with context-specific quality outcomes, a design

decision-support framework was developed. For instance, high scalability was associated with

strategy and microservices, whereas strong maintainability was supported by MVC in layered

architecture. Peer review and triangulation were used to reduce bias and authenticate

interpretations.

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.03 No.03 (2025)

1341

E. Evaluation of Quality

Each chosen study's methodological quality, goal clarity, software quality significance,

patternarchitecture application, and result validity were evaluated using a standard checklist.

To guarantee the dependability of the data, papers with scores lower than 60% were eliminated.

F. Data Analysis Tools

A structured Excel pattern was used for data extraction and analysis. To shed light on how

choices about architecture and design affected quality attributes, comparative insights were

tabulated and thematic relationships were demonstrated.

Comparative Framework:

Figure 3: Frame Work of Design Pattern over Quality Attributes

Results:

This study assessed the effects of numerous architectural styles and design patterns on

important software quality attributes using a comparative analysis methodology. In order to

create a cohesive framework that connects architectural selections with quality attribute results,

we synthesized previously published findings rather than carrying out a primary empirical

investigation. Based on the recognized effects of particular architecture-pattern combinations

on characteristics like scalability, maintainability, testability, and performance, each chosen

study was evaluated. The following research questions and condensed findings provide a

summary of the findings.

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.03 No.03 (2025)

1342

Figure 4: Effectiveness of Architecture & Design Pattern Combination on Quality Atributes

"Effectiveness of Architecture-Pattern Combinations on Quality Attributes"

The performance of five architecture-pattern mixtures across four important software quality

attributes is graphically compared in this line graph:

● Scalability ● Maintainability ●

 Testability ● Performance

A score ranging from 1 to 10 indicates how effective the architecture + design pattern

combination is for each attribute; the higher the score, the better. Each tinted line represents a

distinct architecture + design pattern combination. The quality attributes under assessment are

listed on the X-axis.

Detailed Interpretation by Combination 1.

Microservices + Strategy

● Scalability (9) – Because services scale independently and dynamically, there is very

high scalability.

● Maintainability (6) – Moderate; complex interactions need attention, but modular

services are simpler to administer.

● Testability (7) – Good; allows for isolated unit testing.

● Performance (8) – Excellent, effectively supports the execution of concurrent services.

● Best for: Cloud-native, scalable, and flexible systems.

2. Layered + MVC

● Scalability (6) – Moderate; scaling flexibility may be restricted by layering.

● Maintainability (9) – Excellent; code is easier to maintain when concerns are

separated.

● Testability (7) – Good; unit testing is made simpler by logical separation.

● Performance (6) – Average; minor delays may be introduced by data flow between

layers.

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.03 No.03 (2025)

1343

● Best for: Enterprise apps that require clear code and maintainability.

3. Event-driven + Observer

● Scalability (7) – Event-based systems are reasonably scalable.

● Maintainability (6) – Due to intricate event handling, slightly lower.

● Testability (9) Outstanding; event flows are simple to observe and test.

● Performance (5) – Poorer; under load, asynchronous events may cause a longer

response time.

● Best for: Systems in which test monitoring and fault isolation are essential.

4. Layered + Factory

● Scalability (6) – Average; has the same restrictions as layered architecture.

● Maintainability (8) – High; clarity is enhanced by clean object creation.

● Testability (6) Fair; facilitates transparent modular testing.

● Performance (6) – Acceptable; usage of patterns causes a small overhead.

● Best for: Structured systems that place an emphasis on adaptability and clarity.

.

5. Microservices + Singleton

● Scalability (4) – Structured systems that place an emphasis on adaptability and clarity.

● Maintainability (5) – Below average; changes are risky due to the global state.

● Testability (5) – isolated testing is made more difficult by shared instances.

● Performance (4) – Poor; shared resource access causes performance bottlenecks.

● Not recommended It is not advised for concurrent or scalable systems.

 Key Takeaways

● Top Performers: o Microservices + Strategy is ideal for high scalability and

performance. o Layered + MVC is best for maintainability. o Event-driven +

Observer excels in testability.

● Avoid: o Microservices + Singleton, due to its low scalability and

concurrency problems. This diagram helps architects visually compare

trade-offs and select architecture-pattern combinations that align best with

project-specific quality goals.

Summary of High-Impact Combinations

Although no single architecture or pattern universally outperformed others across all quality

attributes, certain combinations consistently produced superior results in specific contexts. The

top-performing combinations identified were:

● Microservices + Strategy: is the best option for high performance and scalability.

● Layered + MVC: Best for maintainability and separation of concerns.

● Event-driven + Observer: Best for fault isolation and testability

These results lend credence to the creation of a decision-support framework that can help

architects choose the best architecture-pattern combinations contingent on the quality

objectives of a given project.

Conclusion:

In order to inspect the effects of software architectural styles and design patterns on important

quality attributes like performance, maintainability, scalability, and modifiability, this study

carried out an extensive systematic literature review. The excellent and integration of

architecture-pattern combinations are crucial in determining the non-functional features of

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.03 No.03 (2025)

1344

software systems, as demonstrated by the synthesis of data from 97 excellent peer-reviewed

studies.

According to the analysis, there is no worldwide architecture or pattern that ensures the best

outcomes for every quality attribute. Instead, a variety of context-specific factors, including

stakeholder priorities, system scale, development lifecycle, and domain requirements,

influence how effective a given design approach is. For instance, layered architectures with

MVC provided better maintainability and separation of concerns, while microservices

combined with the Strategy pattern showed to be very successful for scalable and flexible

systems. On the other hand, singleton and microservices combinations frequently resulted in

drawbacks, particularly when high concurrency was present.

The study also made clear that there are continuously trade-offs when making architectural

decisions. A balanced and evidence-based approach to decision-making is required because

improving one quality attribute may result in compromises in another. Moreover, the study

highlighted the necessity of predictable and traceable design choices, demonstrating that

methodical long term goals.A decision-support framework that connected particular

architecture-pattern strategies with intended quality consequences was put forth in response to

these findings. This framework is meant to help developers and architects choose appropriate

design strategies that are quality-driven and context-aware.All things considered, this study

emphasizes how crucial it is to make thoughtful, context-sensitive architectural and design

selections early in the software development lifecycle. It supports the creation of reliable,

maintainable, and scalable software systems by offering a basis for both scholarly research and

real-world implementation. Automating the recommendation of architecture-pattern

combinations and confirming the recommended framework in various industrial domains

should be the main goals of future research.

Refrences:

[1] F. Khomh and Y.-G. Gueheneuc, “Design patterns impact on software quality: Where

are the theories?,” in 2018 IEEE 25th International Conference on Software Analysis,

Evolution and Reengineering (SANER), Campobasso: IEEE, Mar. 2018, pp. 15–25. doi:

10.1109/SANER.2018.8330193.

[2] “(PDF) Architecture Patterns, Quality Attributes, and Design Contexts: How

Developers Design with Them?,” in ResearchGate, doi: 10.1109/APSEC.2018.00019.

[3] “Impact of design patterns on software quality: a systematic literature review”, doi:

10.1049/iet-sen.2018.5446.

[4] M. Kassab, G. El-Boussaidi, and H. Mili, “A Quantitative Evaluation of the Impact of

Architectural Patterns on Quality Requirements,” in Software Engineering

Research,Management and Applications 2011, vol. 377, R. Lee, Ed., in Studies in

Computational Intelligence, vol. 377. , Berlin, Heidelberg: Springer Berlin Heidelberg,

2012, pp. 173–184. doi: 10.1007/978-3-642-23202-2_12.

[5] F. Khomh and Y.-G. Gueheneuc, “Design patterns impact on software quality: Where

are the theories?,” in 2018 IEEE 25th International Conference on Software Analysis,

Evolution and Reengineering (SANER), Campobasso: IEEE, Mar. 2018, pp. 15–25. doi:

10.1109/SANER.2018.8330193.

[6] A. Ampatzoglou, G. Frantzeskou, and I. Stamelos, “A methodology to assess the impact

of design patterns on software quality,” Inf. Softw. Technol., vol. 54, no. 4, pp. 331–

346, Apr. 2012, doi: 10.1016/j.infsof.2011.10.006.

CONTEMPORARY JOURNAL OF SOCIAL SCIENCE REVIEW

Vol.03 No.03 (2025)

1345

[7] L. Lundberg, J. Bosch, D. Häggander, and P.-O. Bengtsson, “Quality Attributes in

Software Architecture Design”.

[8] G. Me, C. Calero, and P. Lago, “Architectural Patterns and Quality Attributes

Interaction,” in 2016 Qualitative Reasoning about Software Architectures (QRASA),

Venice, Italy: IEEE, Apr. 2016, pp. 27–36. doi: 10.1109/QRASA.2016.10.

[9] “Quality Attributes In Software Architecture & Design Patterns | PPTX | Computing |

Technology & Computing.” Accessed: July 31, 2025. [Online]. Available:

https://www.slideshare.net/slideshow/quality-attributes-in-software-

architecturedesign-patterns/158565175

[10] G. Me, G. Procaccianti, and P. Lago, “Challenges on the Relationship between

Architectural Patterns and Quality Attributes,” in 2017 IEEE International Conference

on Software Architecture (ICSA), Gothenburg, Sweden: IEEE, Apr. 2017, pp. 141–144.

doi: 10.1109/ICSA.2017.19.

[11] “A method for understanding quality attributes in software architecture structures |

Request PDF,” in ResearchGate, doi: 10.1145/568760.568900.

[12] D. D. Pompeo and M. Tucci, “Quality Attributes Optimization of Software

Architecture: Research Challenges and Directions,” in 2023 IEEE 20th International

Conference on Software Architecture Companion (ICSA-C), Mar. 2023, pp. 252–255.

doi: 10.1109/ICSA-C57050.2023.00061.

[13] “(PDF) Exploring Quality Attributes Using Architectural Prototyping.” Accessed: July

 31, 2025. [Online]. Available:

https://www.researchgate.net/publication/225565727_Exploring_Quality_Attributes_

Using_Architectural_Prototyping

[14] D. Ameller, M. Galster, P. Avgeriou, and X. Franch, “A survey on quality attributes in

service-based systems,” Softw. Qual. J., vol. 24, no. 2, pp. 271–299, June 2016, doi:

10.1007/s11219-015-9268-4.

[15] M. R. Barbacci and P. Pa, “Software Quality Attributes and Architecture Tradeoffs”.

[16] “Management Information System Research - Software Architecture & Quality

Attributes.” Accessed: July 31, 2025. [Online]. Available:

https://sites.google.com/site/misresearch000/home/software-architecture-

qualityattributes

[17] R. Kazman and L. Bass, “Toward Deriving Software Architectures from Quality

Attributes”.

[18] D. Ameller, M. Galster, P. Avgeriou, and X. Franch, “The Role of Quality Attributes

in Service-Based Systems Architecting: A Survey,” in Software Architecture, vol. 7957,

K. Drira, Ed., in Lecture Notes in Computer Science, vol. 7957. , Berlin, Heidelberg:

Springer Berlin Heidelberg, 2013, pp. 200–207. doi: 10.1007/978-3-64239031-9_18.

[19] A. Ampatzoglou, G. Frantzeskou, and I. Stamelos, “A methodology to assess the impact

of design patterns on software quality,” Inf. Softw. Technol., vol. 54, no. 4, pp. 331–

346, Apr. 2012, doi: 10.1016/j.infsof.2011.10.006.

[20] G. Me, C. Calero, and P. Lago, “Architectural Patterns and Quality Attributes

Interaction,” in 2016 Qualitative Reasoning about Software Architectures (QRASA),

Venice, Italy: IEEE, Apr. 2016, pp. 27–36. doi: 10.1109/QRASA.2016.10.

